Download presentation
Presentation is loading. Please wait.
Published byMadeleine St-Gelais Modified over 6 years ago
1
Agenda Textbook / Web Based Resource Basics of Matrices Classwork
11/14/2018 Agenda Textbook / Web Based Resource Basics of Matrices Row-Echelon Form Reduced Row Echelon Form Classwork Homework INSERT HERE
2
Matrices & Linear Systems
11/14/2018 Matrices & Linear Systems
3
By the End of the Day: You should know how to:
11/14/2018 By the End of the Day: You should know how to: Determine the Order of a matrix Perform Elementary Row Operations Identify Elementary Row Operation Identify if a Matrix is in Row-Echelon Form Identify if a Matrix is in Reduced Row-Echelon Form
4
11/14/2018 Definitions Matrix: a rectangular array of numbers. Each number is called an entry Order of a matrix: Tells you how many rows and columns the matrix has. If a matrix has m rows and n columns then it is an m x n matrix. Square matrix Matrix which has the same number of rows and columns
5
Order of a Matrix 11/14/2018 Try These… 2) 1 x 2 4) 5 x 1 6) 3 x 3
This is a 3 x 4 matrix The 2,3 entry is: 5
6
Row Operations There are 3 Elementary Row Operations: 11/14/2018
Interchange two rows Multiply a row by a non zero constant Add a multiple of a row to another row
7
11/14/2018 Row Operations Interchange 2 Rows: Interchange R1 and R3:
8
Row Operations 2. Multiply a row by a non zero constant:
11/14/2018 Row Operations 2. Multiply a row by a non zero constant: Multiply R2 by -2:
9
Row Operations 3. Add a multiple of 1 row to another row:
11/14/2018 Row Operations 3. Add a multiple of 1 row to another row: Add 3 * R1 to R2 3(2) + 4 = (-1) + 5 = 2 3(-2) + 2 = (3) + 8 = 17
10
Row Operations To Determine what row operations occurred:
11/14/2018 Row Operations To Determine what row operations occurred: Identify which row changed If 2 changed, they were probably interchanged Determine if each number is the result of multiplying each number by a constant Determine the constant Determine how much was added to each entry to get the row. Determine which row must have been multiplied to get these numbers, and by how much.
11
Row Operations What row operation was performed? 11/14/2018
Which row changed? Was it mult by a constant? How much was added? Which row was multiplied? What is the row operation? performed? R3 No 4, -4, -2, 6 R1 (by 2) Add 2 * R1 to R3
12
11/14/2018 Row Operations When doing Row-Echelon reduction method there may be more than one operation required. 3*R1 + R2 2*R1 + R2 5*R1 + R3
13
Still Makes the “Staircase”
11/14/2018 Row-Echelon Form A matrix is in row echelon form if: Any rows consisting of entirely zeros occur at the bottom of the matrix For each row that does not consist entirely of zeros, the first nonzero entry is a 1 As you work down the matrix the “leading 1” moves to the right. Still Makes the “Staircase”
14
11/14/2018 Row-Echelon Form Row Echelon Form Not Row-Echelon Form
15
11/14/2018 Row-Echelon Form A matrix is in reduced row echelon form if every entry above and below a leading 1 is 0. Reduced Row Echelon Form Not Reduced Row-Echelon Form
16
Row-Echelon Form You Try These on Your Own: 11/14/2018
INSERT YOUR PROBLEMS HERE
17
ü ü ü ü ü It’s the End of the Day: Do you know how to:
11/14/2018 It’s the End of the Day: Do you know how to: Determine the Order of a matrix? Perform Elementary Row Operations? Identify Elementary Row Operation? Identify if a Matrix is in Row-Echelon Form? Identify if a Matrix is in Reduced Row-Echelon Form? ü ü ü ü ü
18
11/14/2018 Homework Study: INSERT HERE Do: Read & Take Notes:
19
Resource Credits Justin Bohannon
11/14/2018 Resource Credits Justin Bohannon
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.