Presentation is loading. Please wait.

Presentation is loading. Please wait.

Imputation-based local ancestry inference in admixed populations

Similar presentations


Presentation on theme: "Imputation-based local ancestry inference in admixed populations"— Presentation transcript:

1 Imputation-based local ancestry inference in admixed populations
Ion Mandoiu Computer Science and Engineering Department University of Connecticut Joint work with J. Kennedy and B. Pasaniuc

2 Outline Motivation and problem definition
Factorial HMM model of genotype data Algorithms for genotype imputation and ancestry inference Preliminary experimental results Summary and ongoing work

3 Population admixture Admixture mapping is a method for localizing disease causing genetic variants that differ in frequency across populations. It is most advantageous to apply this approach to populations that have descended from a recent mix of two ancestral groups that have been geographically isolated for many tens of thousands of years (e.g. African Americans) 3

4 Admixture mapping Admixture mapping is a method for localizing disease causing genetic variants that differ in frequency across populations. It is most advantageous to apply this approach to populations that have descended from a recent mix of two ancestral groups that have been geographically isolated for many tens of thousands of years (e.g. African Americans) Patterson et al, AJHG 74: , 2004 4

5 Inferred local ancestry
Local ancestry inference problem Given: Reference haplotypes for ancestral populations P1,…,Pn Whole-genome SNP genotype data for extant individual Find: Allele ancestries at each locus Reference haplotypes ? ? ?100101? ? ? ? 011?001? ? ? ? ?100101? ? ? ? 011?001? ? ? ? ?100101? ? ? ? 011?001? ? Inferred local ancestry Admixture mapping is a method for localizing disease causing genetic variants that differ in frequency across populations. It is most advantageous to apply this approach to populations that have descended from a recent mix of two ancestral groups that have been geographically isolated for many tens of thousands of years (e.g. African Americans) rs P1 P1 rs P1 P1 rs P1 P1 rs P1 P2 rs P1 P2 rs P1 P2 rs P1 P2 ... SNP genotypes rs T T rs C T rs G G rs G G rs G G rs C C rs A G ... 5

6 Previous work MANY methods Two main classes
Ancestry inference at different granularities, assuming different amounts of info about genetic makeup of ancestral populations Two main classes HMM-based: SABER [Tang et al 06], SWITCH [Sankararaman et al 08a], HAPAA [Sundquist et al. 08], … Window-based: LAMP [Sankararaman et al 08b], WINPOP [Pasaniuc et al. 09] Poor accuracy when ancestral populations are closely related (e.g. Japanese and Chinese) Methods based on unlinked SNPs outperform methods that model LD! Longer terms for observations: For individual from recently admixed populations the local ancestry of a SNP locus is typically shared with a large number of neighboring loci. The accuracy of SNP genotype imputation within such a neighborhood is typically higher when using the factorial HMMs corresponding to the correct local ancestry compared to a mis-specified model.

7 Haplotype structure in panmictic populations

8 HMM model of haplotype frequencies
Similar models proposed in [Schwartz 04, Rastas et al. 05, Kennedy et al. 07, Kimmel&Shamir 05, Scheet&Stephens 06,…]

9 Graphical model representation
F1 F2 Fn H1 H2 Hn Random variables Fi = founder haplotype at locus i, between 1 and K Hi = observed allele at locus I Model training Based on haplotypes using Baum-Welch algo, or Based on genotypes using EM [Rastas et al. 05] Given haplotype h, P(H=h|M) can be computed in O(nK2) using a forward algorithm, where n=#SNPs, K=#founders

10 Factorial HMM for genotype data in a window with known local ancestry
F1 F2 Fn H1 H2 Hn F'1 F'2 F'n The Hierarchical-Factorial HMM we used to describe haplotype sequences is similar to models recently proposed by others. At the core of the model are 2 regular HMM representing haplotype frequencies in the populations of origin of the sequenced individual’s parents. Under this model each haplotype in the population is viewed as a mosaic formed as a result of historical recombination among a set of K founder haplotypes. Increasing the number of founders allows more paths to describe a haplotype sequence, but at a cost of a longer run time. Training & the estimation of this HMM is done via a Baum-Welch algorithm based on haplotype inferred from a panel representing the population of origin of each parent. H'1 H'2 H'n G1 G2 Gn 10

11 HMM Based Genotype Imputation
Probability of missing genotype given the typed genotype data:  gi is imputed as

12 Forward-backward computation
fi hi f’i h’i gi 12

13 Forward-backward computation
fi hi f’i h’i gi 13

14 Forward-backward computation
fi hi f’i h’i gi 14

15 Forward-backward computation
fi hi f’i h’i gi 15

16 Runtime Direct recurrences for computing forward probabilities:
Runtime reduced to O(nK3) by reusing common terms: where 16

17 Imputation-based ancestry inference
View local ancestry inference as a model selection problem Each possible local ancestry defines a factorial HMM Pick model that re-imputes SNPs most accurately around the locus of interest Fixed-window version: pick ancestry that maximizes the average posterior probability of true SNP genotypes within a fixed-size window centered at the locus Multi-window version: weighted voting over window sizes between , with window weights proportional to average posterior probabilities Longer terms for observations: For individual from recently admixed populations the local ancestry of a SNP locus is typically shared with a large number of neighboring loci. The accuracy of SNP genotype imputation within such a neighborhood is typically higher when using the factorial HMMs corresponding to the correct local ancestry compared to a mis-specified model.

18 HMM imputation accuracy
Missing data rate and accuracy for imputed genotypes at different thresholds (WTCCC 58BC/Hapmap CEU)

19 Window size effect N=2,000 g=7 =0.2 n=38,864 r=10-8

20 Number of founders effect
CEU-JPT N=2,000 g=7 =0.2 n=38,864 r=10-8

21 Comparison with other methods
Alpha is the (X100) percentage of individuals coming from one population, with 1-alpha being the percentage of individuals coming from the second population. N=2,000 g=7 =0.2 n=38,864 r=10-8 21

22 Summary and ongoing work
Imputation-based local ancestry inference achieves significant improvement over previous methods for admixtures between close ancestral populations Code at Ongoing work Evaluating accuracy under more realistic admixture scenarios (multiple ancestral populations/gene flow/drift in ancestral populations) Extension to pedigree data Exploiting inferred local ancestry for more accurate untyped SNP imputation and phasing of admixed individuals Extensions to sequencing data Inference of ancestral haplotypes from extant admixed populations

23 Untyped SNP imputation accuracy in admixed individuals
Alpha is the (X100) percentage of individuals coming from one population, with 1-alpha being the percentage of individuals coming from the second population. N=2,000 g=7 =0.5 n=38,864 r=10-8 23

24 HMM-based phasing F1 F2 Fn H1 H2 Hn F'1 F'2 F'n H'1 H'2 H'n G1 G2 Gn Maximum likelihood genotype phasing: given g, find (h1,h2) = argmax h1+h2=g P(h1|M)P(h2|M)

25 HMM-based phasing Bad news: Cannot approximate maxh1+h2=g P(h1|M)P(h2|M) within a factor of O(n1/2 -), unless ZPP=NP [KMP08] Good news: Viterbi-like heuristics yields phasing accuracy comparable to PHASE in practice [Rastas et al. 05]

26 Factorial HMM model for sequencing data
F1 F2 Fn H1 H2 Hn F'1 F'2 F'n The Hierarchical-Factorial HMM we used to describe haplotype sequences is similar to models recently proposed by others. At the core of the model are 2 regular HMM representing haplotype frequencies in the populations of origin of the sequenced individual’s parents. Under this model each haplotype in the population is viewed as a mosaic formed as a result of historical recombination among a set of K founder haplotypes. Increasing the number of founders allows more paths to describe a haplotype sequence, but at a cost of a longer run time. Training & the estimation of this HMM is done via a Baum-Welch algorithm based on haplotype inferred from a panel representing the population of origin of each parent. H'1 H'2 H'n G1 G2 Gn R1,1 R1,c R2,1 R2,c Rn,1 Rn,c 1 2 n 26

27 Acknowledgments J. Kennedy and B. Pasaniuc
Work supported in part by NSF awards IIS and DBI


Download ppt "Imputation-based local ancestry inference in admixed populations"

Similar presentations


Ads by Google