Presentation is loading. Please wait.

Presentation is loading. Please wait.

Algoritmi de rutare bazați pe informațiile de poziție ale nodurilor într-o rețea ad-hoc Proiect realizat în cadrul cursului “Rețele de Calculatoare și.

Similar presentations


Presentation on theme: "Algoritmi de rutare bazați pe informațiile de poziție ale nodurilor într-o rețea ad-hoc Proiect realizat în cadrul cursului “Rețele de Calculatoare și."— Presentation transcript:

1 Algoritmi de rutare bazați pe informațiile de poziție ale nodurilor într-o rețea ad-hoc
Proiect realizat în cadrul cursului “Rețele de Calculatoare și Internet" Petruș Andrei An 2 – Master IISC

2 Cuprins Introducere in retele de senzori wireless / ad-hoc
Algoritmi de rutare Generalitati Parametrii critici Algoritmul A: LAR Algoritmul B: DREAM

3 1. Introducere in WSN/WAN
Ce este un senzor wireless? SoC compus din: Procesor consum redus Putere de procesare limitata Memorie Capacitate redusa Modul radio Rata de transfer mica Raza de acoperire redusa Senzori Scalari Camere de captura, microfoane Sursa energie P O W E R Sensors Storage Processor Radio Fig. 1 – modulele componente ale unui nod Fig. 2 – exemple de noduri WSN (incapsulat si SMD)

4 1. Introducere in WSN/WAN
Ce este o retea de senzori wireless? Este compusa din mai multi senzori wireless (noduri) Proprietati: Puternic limitate dpdv energetic (compromis performanta/autonomie) Self-management, Self-organizing Scalabile (numar mare de noduri) Heterogene (noduri organizateierarhic, dispozitive cu diferite capabilitati) Adaptabile Securitate sporita Fig. 3 – retea WSN cu senzori distribuiti aleator

5 1. Introducere in WSN/WAN
Diferente intre WSN / WAN Retelele de senzori sunt mai dense Retelele de senzori sunt predispuse la erori/failures Topologia retelelor de senzori de schimba foarte des WSN trimite mesajele broadcast, pe cand in retelele ad-hoc comunicarea este point-to-point Nodurile din WSN pot sau nu sa aiba identificator unic global

6 1. Introducere in WSN/WAN
Aplicatii ale retelelor de senzori wireless Monitorizare Scop stiintific, aplicatii in ecologie. Informatii spatio-temporale in timp real Accesul la zone restrictionate Supraveghere si urmarire Recunoastere Controlul perimetrului Medii “inteligente” Agricultura Procese industriale

7 1. Introducere in WSN/WAN
Aplicatii ale retelelor de senzori wireless Monitorizare Fig. 4 – o implementare WSN in scop de monitorizare a unui obiectiv

8 1. Introducere in WSN/WAN
Aplicatii ale retelelor de senzori wireless Supraveghere si urmarire Fig. 5 – o implementare WSN in scop militar, de recunoastere

9 1. Introducere in WSN/WAN
Aplicatii ale retelelor de senzori wireless Fig. 6 – implementari WSN in aplicatii consumer

10 2. Algoritmi de rutare Algoritm de rutare -> serviciu Funcții:
Defineste procedurile si infrastructura pentru transmiterea mesajelor/datelor intre nodurile retelei Asigura flexibilitate si adaptabilitate retelei Un algoritm de rutare eficient va contribui semnificativ la: autonomia generala a sistemului, confidentialitatea datelor transmise Fig. 7 – frame-ul pachetului intr-o retea TDMA Fig. 8 – o retea WSN

11 2. Algoritmi de rutare Ce folosesc informatiile de pozitie ale nodurilor in retea: GPSR – Greedy Perimeter Stateless Routing Location-aware long-lived route selection DREAM – Distance Routing Algorithm for Mobility LAR – Location Aided Routing Fig. 9 – GPSR (rutare geografica) Fig. 10 – retea WAN Fig. 11 – LAR (rutarea asistata de localizare)

12 2a. Parametrii critici Parametrii critici pentru algoritmii de rutare:
Eficienta de rutare (correct destination high hit rate) Evitarea buclelor de rutare Alegerea rutelor optime Viteza de rutare Perioada mica de convergenta a retelei Rata ridicata de transfer a pachetelor in retea Eficienta energetica Complexitatea implementarii

13 2b. Protocolul de rutare LAR
Foloseste doar informatii geo pentru descoperirea rutelor si se bazeaza pe un protocol de rutare on-deman (gen Ad-hoc on demand distance-vector routing) Daca emitorul cunoaste o pozitie anterioara a receptorului cat si viteza acestuia de deplasare, el va calcula o arie unde este posibil sa se afle receptorul in momentul actual (expected zone) Astfel, se va minimiza efectul de flood a pachetelor menite sa identifice rutele Pachetele sunt trimise doar in ‘expected zone’ Daca un nod din exteriorul acestei zone primeste un astfel de pachet, il ignora Daca nodul destinatie primeste pachetul, acesta raspunde cu pozitia sa curenta si viteza de deplasare Atunci cand un nod intra in retea, acesta nu cunoaste informatiile de pozitie a celorlalte noduri, motiv pentru care nodul face fall-back si va folosi protocolul fundamental de rutare (flood the entire network) The Location Aided Routing Protocol (LAR, [Ko00]) only uses geographical information for route discovery. It is based on an on-demand protocol, like AODV. If the sender knows where the destination was at some time and it knows its speed, it can determine in which area the destination is now. This area is called the expected zone. LAR uses this to limit the flooding of route discovery packets. Packets are flooded within an defined area containing both the source and the expected zone. When a node outside this area recieves a packet, it ignores it. When the destination receives the route discovery packet, it returns it with its current location and speed, which can assist in future route discoveries. When a node enters the network, it has no information about the geographical position of other nodes. LAR will then fall back to the underlying protocol, which floods the route discovery packet. For LAR to be an improvement over flooding, the network has to be stable. LAR will perform well for moving nodes and disappearing nodes, but not when a lot of new nodes are added to the network. Furthermore, connections in the network has to be stable. If nodes connect to many other nodes for a short time, location information will not be available or accurate enough to make use of LAR. Fig. 13 – LAR (rutarea asistata de localizare)

14 2b. Protocolul de rutare LAR
Pentru ca LAR sa aduca un beneficiu peste traditionalul flood, reteaua trebuie sa fie stabila! LAR va fi eficient in cadrul retelelor dinamice (si/sau) cu noduri care dispar, insa eficienta va fi scazuta atunci cand apar noduri noi. Avantaje: Se evita floodarea inutila a intregii retele Performante ridicate chiar si in retele puternic dinamice Dezavantaje Daca reteaua nu este stabila, algoritmul este ineficient Performantele sunt scazute in retelele in care fluxul de intrare a nodurilor noi este ridicat For LAR to be an improvement over flooding, the network has to be stable. LAR will perform well for moving nodes and disappearing nodes, but not when a lot of new nodes are added to the network. Furthermore, connections in the network has to be stable. If nodes connect to many other nodes for a short time, location information will not be available or accurate enough to make use of LAR.

15 2c. Protocolul de rutare DREAM
Fiecare nod isi cunoaste pozitia Fiecare nod isi comunica adresa si pozitia in retea Cand se trimite un pachet, acesta este inaintat numai pe directia nodului receptor Apare “efectul de distanta”: Nodurile apropiate intre ele isi trimit informatii unul celuilalt mai des decat nodurile intre care exista o distanta mai mare Cand un pachet este transmis de la nodul A catre nodul mai departat B, informatiile despre pozitia nodului B se detaliaza pe masura ce pachetul se propaga in retea Cand un nod isi schimba pozitia dez, acesta trimite mai frecvent informatii vecinilor sai The DREAM protocol was proposed in [Bas98]. It assumes that each node knows its own location. Each node then communicates its address and location through the network. When a packet is sent, it is sent to the direction of the receiving node. DREAM makes use of what is called the distance effect: the greater the distance separating two nodes, the slower they appear to be moving with respect to each other. Neighbours close by are frequently informed of the location of a node; nodes which are farther away only occasionally receive this information. The further a packet travels to its destination, the more detailed the position of the destination becomes. Furthermore, DREAM takes into account the mobility of the nodes. When a node travels fast, it frequently sends its location information to its neighbours. DREAM is similar to HSLS in that the update frequency is dependant on the distance to a node, only it uses coordinates instead of routing paths. This makes it very well scalable, but introduces the problem of determining the location for each node. Fig. 12 – GPSR (rutare geografica)

16 2c. Protocolul de rutare DREAM
Frecventa de actualizare/notificare a informatiilor de pozitie a unui nod A catre nodul B este dependenta de distanta dintre aceste noduri. Informatiile de pozitie constau in coordonate, ci nu in cai de rutare! Avantaje: Permite o scalabilitate ridicata a retelei Algoritmul are o eficienta de rutare buna Dezavantaje Trebuie rezolvata problema achizitiei informatiilor de pozitie pentru fiecare nod (prin GPS = cost ridicat dpdv al eficientei energetice) DREAM is similar to HSLS in that the update frequency is dependant on the distance to a node, only it uses coordinates instead of routing paths. This makes it very well scalable, but introduces the problem of determining the location for each node.

17 Bibliografie P. Bahl and V. N. Padmanabhan. Radar: An in-building RF-based user location and tracking system. In Proc. IEEE INFOCOMM, paginile 775­784, 2000. N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications, 7(5):28-34, Special Issue on Smart Spaces and Environments. S. Capkun, M. Hamdi, and J.-P. Hubaux. GPS-free positioning in mobile ad-hoc networks. In Proc. of 34th HICSS, volume 9, pagina 9008, 2001. B. Kusy, M. Maroti, G. Balogh, P. V Olgyesi, J. Sallai, A. Nadas, A. Ledeczi, and L. Meertens. Node density independent localization. In Proc. of IPSN, paginile , 2006. K. Pister L. Doherty and L. EI Ghaoui. Convex optimization methods for sensor node position estimation. In Proc. of IEEE INFOCOMM, paginile , 2001. R. Nagpal, H. E. Shrobe, and J. Bachrach. Organizing a global coordinate system from local information on an ad hoc sensor network. In Proc. of IPSN '03, paginile , 2003. D. Niculescu and B. Nath. SpotON: An indoor 3-d location sensing technology based on RF signal strength. Technical Report Report #2000­02-02, Department of CSE, University of Washington, Feb D. Niculescu and B. Nath. Ad hoc positioning system (APS). In Proc. of GLOBECOMM, volume 5, paginile , 2001. D. Niculescu and B. Nath. Ad hoc positioning system (APS) using aoa. In Proc. of IEEE INFOCOMM, paginile , 2003. A. Savvides, C. C. Han, and M. B. Srivastava. Dynamic fine-grained localization in ad-hoc networks of sensors. In Proc. of MobiCom, paginile , 2001. A. Savvides, H. Park, and M. B. Srivastava. The n-hop multilateration primitive for node localization problems. Mobile Networks and Appli­cations, 8(4): , 2003. A. Vargas. The OMNeT++ discrete event simulation system. In Proc. of ESM), paginile , 2001.

18 Algoritmi de rutare bazați pe informațiile de poziție ale nodurilor într-o rețea ad-hoc
Proiect realizat în cadrul cursului “Rețele de Calculatoare și Internet" Va mulțumesc !


Download ppt "Algoritmi de rutare bazați pe informațiile de poziție ale nodurilor într-o rețea ad-hoc Proiect realizat în cadrul cursului “Rețele de Calculatoare și."

Similar presentations


Ads by Google