Download presentation
Presentation is loading. Please wait.
Published byΣωφρόνιος Κακριδής Modified over 6 years ago
1
Iterative Program Analysis Abstract Interpretation
Mooly Sagiv Tel Aviv University Textbook: Principles of Program Analysis Chapter 4 CC79, CC92
2
Outline Later on The abstract interpretation technique
The main theorem Applications Precision Complexity Widening Later on Combining Analysis Interprocedural Analysis Shape Analysis
3
Soundness Theorem(1) Let (, ) form Galois connection from C to A
f: C C be a monotone function f# : A A be a monotone function aA: f((a)) (f#(a)) lfp(f) (lfp(f#)) (lfp(f)) lfp(f#)
4
Soundness Theorem(2) Let (, ) form Galois connection from C to A
f: C C be a monotone function f# : A A be a monotone function cC: (f(c)) f#((c)) (lfp(f)) lfp(f#) lfp(f) (lfp(f#))
5
Soundness Theorem(3) Let (, ) form Galois connection from C to A
f: C C be a monotone function f# : A A be a monotone function aA: (f((a))) f#(a) (lfp(f)) lfp(f#) lfp(f) (lfp(f#))
6
Completeness (lfp(f)) = lfp(f#) lfp(f) = (lfp(f#))
7
Constant Propagation Local Soundness Optimality (Induced)
: [Var Z] [Var Z{, }] () = () : P([Var Z]) [Var Z{, }] (X) = {() | X} = { | X} :[Var Z {, }] P([Var Z]) (#) = { | () # } = { | # } Local Soundness st#(#) ({st | (#) = {st | # } Optimality (Induced) st#(#) = ({st | (#)} = {st | # } Soundness Completeness
8
Example Interval Analysis
Find a lower and an upper bound of the value of a variable Usages? Lattice L = (Z{-, }Z {-, }, , , , ,) [a, b] [c, d] if c a and d b [a, b] [c, d] = [min(a, c), max(b, d)] [a, b] [c, d] = [max(a, c), min(b, d)] = =
9
Domains with Infinite Heights for Integers
y Intervals CC’77: xi b Octagons SKS’00, Mine’01: xi yi b Polyhedra Cousot& Halbwachs’78: ai*xi b x
10
Formal available expression
Find out which expressions are available at a given program point Example program x = y + t //{(y+t)} z = y + r //{(y+t), (y+r)} while (…) { // {(y+t), (y+r)} t = t + (y + r) // {(y+t), (y+r), t + (y +r )} }
11
Available expression lattice
P(Fexp) X Y X Y X Y = X Y = Fexp =
12
Available expressions
Computing Fexp for while s ::= skip { s.Fexp := } s := id = exp { s.Fexp = {exp.rep } s := s ; s { s.Fexp := s[1].Fexp s[2].Fexp } s := while exp do s { s.Fexp := {exp.rep} s[1].Fexp } s := if exp then s else s { s.Fexp := {exp.rep} s[1].Fexp s[2].Fexp }
13
Instrumented Semantics Available expressions
S Stm : State P(Fexp) State P(Fexp) S id := a (, ae) = ([a a a ], notArg(id, ae {a} ) S skip (, ae) = (, ae) CS Stm : P(State P(Fexp)) P(State P(Fexp)) CS s (X) ={S s (, ae) | (, ae) X}
14
Collecting Semantics Example
x = y * z; if (x == 6) y = z+ t; … r = z + t;
15
Formal Available Expressions Abstraction
: [Var Z] P(Fexp) P(Fexp) (, ae) = (ae) : P(P([Var Z] P(Fexp)) P(Fexp) (X) = {() | X} = {ae | (, ae) X} : P(Fexp) P(P([Var Z] P(Fexp)) (ae#) = {(, ae) | (, ae) ae# } = {(, ae) | ae ae# }
16
Formal Available Expressions AI
S Stm # : P(Fexp) P(Fexp) S id := a # (ae) = notArg(id, ae {a} ) S skip # (ae) = (ae) Local Soundness st#(ae#) {(st (, ae)[1] | ae ae# } Optimality st#(ae#) = ({st (, ae) | (, ae) (#)} = {(st (, ae)[1] | ae ae# } The initial value at the entry is Example program x = y + t //{(y+t)} z = y + r //{(y+t), (y+r)} while (…) { // {(y+t), (y+r)} t = t + (y + r) // { (y+r)} } Soundness and Completeness
17
Example: May-Be-Garbage
A variable x may-be-garbage at a program point v if there exists a execution path leading to v in which x’s value is unpredictable: Was not assigned Was assigned using an unpredictable expression Lattice Galois connection Basic statements Soundness
18
The PWhile Programming Language Abstract Syntax
a := x | *x | &x | n | a1 opa a2 b := true | false | not b | b1 opb b2 | a1 opr a2 S := x := a | *x := a | skip | S1 ; S2 | if b then S1 else S2 | while b do S
19
Concrete Semantics for PWhile
State1= [LocLocZ] For every atomic statement S S : States1 States1 x := a ()=[loc(x) Aa ] x := &y () x := *y () x := y () *x := y ()
20
Points-To Analysis Lattice Lpt = Galois connection
Meaning of statements
21
t := &a; y := &b; z := &c; if x> 0 then p:= &y; else p:= &z; *p := t;
22
/. . / t := &a; /. {(t, a)}. / /. {(t, a)}. / y := &b; /
/* */ t := &a; /* {(t, a)}*/ /* {(t, a)}*/ y := &b; /* {(t, a), (y, b) }*/ /* {(t, a), (y, b)}*/ z := &c; /* {(t, a), (y, b), (z, c) }*/ if x> 0; then p:= &y; /* {(t, a), (y, b), (z, c), (p, y)}*/ else p:= &z; /* {(t, a), (y, b), (z, c), (p, z)}*/ /* {(t, a), (y, b), (z, c), (p, y), (p, z)}*/ *p := t; /* {(t, a), (y, b), (y, c), (p, y), (p, z), (y, a), (z, a)}*/
23
Abstract Semantics for PWhile
State#= P(Var* Var*) For every atomic statement S x := a () x := &y () x := *y () x := y () *x := y ()
24
/. . / t := &a; /. {(t, a)}. / /. {(t, a)}. / y := &b; /
/* */ t := &a; /* {(t, a)}*/ /* {(t, a)}*/ y := &b; /* {(t, a), (y, b) }*/ /* {(t, a), (y, b)}*/ z := &c; /* {(t, a), (y, b), (z, c) }*/ if x> 0; then p:= &y; /* {(t, a), (y, b), (z, c), (p, y)}*/ else p:= &z; /* {(t, a), (y, b), (z, c), (p, z)}*/ /* {(t, a), (y, b), (z, c), (p, y), (p, z)}*/ *p := t; /* {(t, a), (y, b), (y, c), (p, y), (p, z), (y, a), (z, a)}*/
25
Flow insensitive points-to-analysis Steengard 1996
Ignore control flow One set of points-to per program Can be represented as a directed graph Conservative approximation Accumulate pointers Can be computed in almost linear time Union find
26
t := &a; y := &b; z := &c; if x> 0; then p:= &y; else p:= &z; *p := t;
27
Precision We cannot usually have
(CS) = DF on all programs But can we say something about precision in all programs?
28
The Join-Over-All-Paths (JOP)
Let paths(v) denote the potentially infinite set paths from start to v (written as sequences of edges) For a sequence of edges [e1, e2, …, en] define f #[e1, e2, …, en]: L L by composing the effects of basic blocks f #[e1, e2, …, en](l) = f#(en) (… (f#(e2) (f#(e1) (l)) …) JOP[v] = {f#[e1, e2, …,en]() [e1, e2, …, en] paths(v)}
29
JOP vs. Least Solution The df solution obtained by Chaotic iteration satisfies for every v: JOP[v] df(v) A function f# is additive (distributive) if f#({x| x X}) = {f#(x) | X} If every f# (u,v) is additive (distributive) for all the edges (u,v) JOP[v] = df(v) Examples Maybe garbage Available expressions Constant Propagation Points-to
30
Notions of precision CS = (df) (CS) = df Meet(Join) over all paths
Using best transformers Good enough
31
Complexity of Chaotic Iterations
Usually depends on the height of the lattice In some cases better bound exist A function f is fast if f (f(l)) l f(l) For fast functions the Chaotic iterations can be implemented in O(nest * |V|) iterations nest is the number of nested loop |V| is the number of control flow nodes
32
Conclusion Chaotic iterations is a powerful technique
Easy to implement Rather precise But expensive More efficient methods exist for structured programs Abstract interpretation relates runtime semantics and static information The concrete semantics serves as a tool in designing abstractions More intuition will be given in the sequel
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.