Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction to Optoelectronics Optical communication (3) Optical components Prof. Katsuaki Sato.

Similar presentations


Presentation on theme: "Introduction to Optoelectronics Optical communication (3) Optical components Prof. Katsuaki Sato."— Presentation transcript:

1 Introduction to Optoelectronics Optical communication (3) Optical components
Prof. Katsuaki Sato

2 Optical components Previous lectures (1) Optical fibers
Transmission of light by total reflection (2) Laser diodes The pn-junction is forward biased Above threshold current lasing occurs High density of carriers and photons are confined in thin active layer (DH structure)

3 Component (3) Optical detectors
Using photodiode Very fast response required pin photodiode or Schottky junction photodiode are used As material for photodiode InGaAs semiconductors are used

4 Photodiode Optical signal Incident photon
Structure and band diagram of photo-diode p n Depletion layer Reverse bias Incident photon Electric signal Bias voltage Load resistance Photocurrent Optical signal 佐藤勝昭編著「応用物性」p.152

5 Photodetection Pin-PD Schottky PD
Response is determined by capacitance of depletion layer where photocarrier flows Thinning of depletion layer and reduction of junction area is necessary pin photodiode Schottky diode Andrew Davidson, Focused Research Inc. and Kathy Li Dessau, New Focus Inc.

6 Fundamentals of photodiode
p-type n-type Depletion layer + - Illuminate the pn junction Electrons and holes are generated by an excitation across the gap Generated electrons and holes are separated and drift to electrodes by diffusion potential

7 Component 4 Fiber amplifier
Light signal traveling in optical fiber for 100 km suffers 20 dB(1/100)attenuation. Therefore the light intensity should be recovered. Optical fiber amplifier is used for this purpose. Optical amplifier consists of an erbium doped fiber (EDF) and a pumping laser. By introducing the strong pumping light to EDF the signal light can be amplified by stimulated emission from Er ion. EDF Optical isolator Pumping laser Composer Band pass filter Light input Asahi Glass Company HPhttp://

8 Amplification by Er ion
EDF absorbs light with wavelength of 980nm or1480nm and emits infrared light with wavelength of1530nm. Optical amplification is possible utilizing stimulated emission of the 1530-nm luminescence. Inputting pumping laser light into EDF, Er ion become excited by absorbing the laser light and the signal light stimulate to make a transition to the ground level emitting the light with wavelength around 1530 nm, which is close to the signal light wavelength. Thus the incident light is amplified utilizing the emitted light. Luminescent intensity and spectrum width differ from sample to sample according to the concentration of doped Er-ion. The broader the bandwidth of the emission band the broader the bandwidth of communication. From the Web-site of Asahi Glass Inc. HPhttp://

9 Component 5 Optical isolator
Optical isolator is an optical component that makes the light direction oneway. Operation of laser diodes (LD) and optical amplifiers (EDFA) become unstable and generate noise when returned light enters. Optical isolator utilize Faraday effect to cut off the returned beam and stabilize the operation of lasers and amplifiers. Shinkosha

10 Polarization-dependent isolator
analyzer Magnetic field Returned beam polarizer Faraday rotator Forward direction Incident light Reversed direction

11 Polarization-independent isolator
Fiber 2 Fiber 1 Forward direction Reverse direction ½ waveplate C Birefringent plate B2 B2 B1 F C Birefringent plate B1 Faraday rotator F

12 Component 6 WDM=wavelength division multiplexing
WDM technique can increase communication capacity by transmitting many different light signal of different wavelength simultaneously. Fiber cables can utilize wavelength region from 1450 to1650nm since the transmission loss is very low (less than 0.3dB/km) in this region.

13 Optical add-drop Optical add-drop can separately drop desired wavelength from multiplexed-signal network or can add a particular wavelength to the network Grating optical fiber Optical circulator

14 Optoelectronic integrated circuits (OEIC)
Integration of optical and electronic semiconductor devices Two types of OEIC exist One is integration of light emitting devices (example: LD) and driving FET circuits The other is integration of optical detection device like PD and electronic circuits for amplification and signal processing Compound semiconductors such as GaAs-based and InP-based alloy semiconductors are used.

15 Magneto-optical circulator
Prism polarizer A Faraday rotator Prism polarizer B Half wave plate Port 1 Port 3 Port 2 Port 4 Reflection prism


Download ppt "Introduction to Optoelectronics Optical communication (3) Optical components Prof. Katsuaki Sato."

Similar presentations


Ads by Google