Presentation is loading. Please wait.

Presentation is loading. Please wait.

Financial Analysis, Planning and Forecasting Theory and Application

Similar presentations


Presentation on theme: "Financial Analysis, Planning and Forecasting Theory and Application"— Presentation transcript:

1 Financial Analysis, Planning and Forecasting Theory and Application
Chapter 23 Long-Range Financial Planning – A Linear-Programming Modeling Approach By Cheng F. Lee Rutgers University, USA John Lee Center for PBBEF Research, USA

2 Outline 23.1 Introduction 23.2 Carleton’s model
23.3 Brief discussion of data inputs 23.4 Objective-function development 23.5 The constraints 23.6 Analysis of overall results 23.7 Summary Appendix 23A. Carleton’s linear-programming model: General Mills as a case study Appendix 23B. General Mills’ actual key financial data

3 23.2 Carleton’s model

4 23.2 Carleton’s model

5 23.2 Carleton’s model

6 23.2 Carleton’s model

7 23.3 Brief discussion of data inputs
Table 23.3

8 23.3 Brief discussion of data inputs
Table 23.3 Cont.

9 23.3 Brief discussion of data inputs
Table 23.4

10 23.3 Brief discussion of data inputs
Table 23.4 Cont.

11 23.4 Objective-function development
(23.1) where

12 23.4 Objective-function development
(23.2) (23.3) (23.3a)

13 23.4 Objective-function development
(23.4) (23.5)

14 23.4 Objective-function development
(23.6) (23.7a) (23.7b)

15 23.5 The constraints Definitional constraints Policy constraints

16 23.5 The constraints Fig Structure of the optimizing financial planning model. (From Carleton, W. T., C. L. Dick, Jr., and D. H. Downes, "Financial policy models: Theory and Practice," Journal of Financial and Quantitative Analysis (December 1973). Reprinted by permission.)

17 23.5 The constraints (23.8) (23.9) Because General Mills has no preferred stock or extraordinary items, AFC = ATP:

18 23.5 The constraints

19 23.5 The constraints , ,

20 23.5 The constraints Table 23.5 (a)

21 23.5 The constraints .

22 23.5 The constraints Table 23.5 (b)

23 23.5 The constraints To get the interest payment on long-term debt

24 23.5 The constraints

25 23.5 The constraints AFC1+0.00441DL1=149.17 (23.10a)
AFC DL2= (23.10b) AFC DL3= (23.10c) AFC DL4= (23.10d)

26 23.5 The constraints (23.11) where

27 23.5 The constraints (23.12a) (23.12b)

28 23.5 The constraints (23.13) where

29 23.5 The constraints

30 23.5 The constraints

31 23.5 The constraints

32 23.5 The constraints

33 23.5 The constraints

34 23.5 The constraints (23.10e) (23.10f) (23.10g) (23.10h) (23.10i)

35 23.5 The constraints (23.14)

36 23.5 The constraints .

37 23.5 The constraints

38 23.5 The constraints (23.15a) (23.15b) (23.15c) (23.15d)

39 23.5 The constraints (23.16) (23.17a) (23.17b)

40 23.5 The constraints (23.17c) (23.17d) (23.18a)

41 23.5 The constraints (23.18b) (23.18c)

42 23.5 The constraints

43 23.5 The constraints (23.17f)

44 23.5 The constraints

45 23.5 The constraints

46 22.5 The constraints

47 23.5 The constraints (23.17o)

48 23.5 The constraints Table 23.6

49 23.5 The constraints

50 23.5 The constraints (23.17t)

51 23.5 The constraints Table 23.7

52 23.5 The constraints Table 23.7 Cont.

53 23.5 The constraints Table 23.7 Cont.

54 23.5 The constraints Table 23.7 Cont.

55 23.6 Analysis of overall results
Table 23.8

56 23.6 Analysis of overall results
Table 23.9

57 23.7 Summary and conclusion
In this chapter, we have considered Carleton's linear-programming model for financial planning. We have also reviewed some concepts of basic finance and accounting. Carleton's model obtains an optimal solution to the wealth- maximization problem and derives an appropriate financing policy. The driving force behind the Carleton model is a series of accounting constraints and firm policy constraints. We have seen that the model relies on a series of estimates of future factors. In the next chapter, we will consider another type of financial-planning model, the simultaneous-equation models. Many of the concepts and goals of this chapter will carryover to the next chapter. We will, of course, continue to expand our horizons of knowledge and valuable tools.

58 Appendix 23A. Carleton’s linear-programming model: General Mills as a case study
PROBLEM SPECIFICATION MPOS VERSION NORTHWESTERN UNIVERSITY M P 0 S VERSION 4.0 MULTI-PURPOSE OPTIMIZATION SYSTEM ***** PROBLEM NUMBER 1 ***** MINIT VARIABLES Dl D2 D3 D4 El E2 E3 E4 E5 AFC1 AFC2 AFC3 AFC4 DL1 DL2 DL3 DL4 MAXIMIZE .018Dl-.0196El+.015D2-.017E2+.013D3-.0144E3+.011D4-.0125E4-.015E5 CONSTRAINTS 1. AFC1+.0441DLl .EQ 2. AFC2+.0441DL2 .EQ 3. AFC3+.0441DL3 .EQ 4. AFC4+.0441DL4. EQ 5. DL1+E1 .EQ 6. AFC1-D1+DL2-DL1+E2 .EQ 7. AFC2-D2+DL3-DL2+E3 .EQ 8. AFC3-D3+DL4-DL3+E4 .EQ 9. -AFC4+D4+DL4-E5 .EQ 10. DL1 .LE

59 Appendix 23A. Carleton’s linear-programming model: General Mills as a case study
PROBLEM SPECIFICATION (Cont.) 11. DL2 .LE 12. DL3 .LE. 460 13. DL4 .LE 14. DL1 .LE 15. DL2-DL1 .LE 16. DL3-DL2 .LE 17. DL4-DL3 .LE 18. DL4 .GE 19. -.0566D1-.0486D2-.0417D3-.0358D4+1.1740El+.0539E2+.0463E3+.0387E4 +.034E5 .LE. 71.8 20. -.0566D2-.0486D3-.04 17D4+.1728E2+.0539E3+.0463E4+.0397E55 .LE. 83.8 21. -.0566D3-.0486D4+1.1728E3+.0533E4+.046E5 .LE. 97.6 22. -.0566D4+1.7280E4+.0539E5 .LE 23. 1.1728E5 .LE 24. Dl .GE 25. D2-1.06D1 .GE. 0

60 Appendix 23A. Carleton’s linear-programming model: General Mills as a case study
PROBLEM SPECIFICATION (Cont.) 26. D3-1.06D2 .CE. 0 27. D3-1.06D3 .GE. 0 28. D4 .LE 29. D1-.75AFC1 .LE. 0 30. D2-.75AFC2 .LE. 0 31. D3-.75AFC3 .LE. 0 32. D4-.75AFC4 .LE. 0 33. Dl-. 15AFC1 .GE. 0 34. D2-.15AFC2 .GE , 35. D3-.15AFC3 .GE. 0 36. D4-.15AFC4 .GE. 0 37. Dl-.4AFCl+D2-.4AFC2+D3-.4AFC3+D4-.4AFC4 .LE. 9.36

61 MPOS VERSION 4.0 NORTHWESTERN UNIVERSITY
Appendix 23A. Carleton’s linear-programming model: General Mills as a case study SOLUTION MPOS VERSION NORTHWESTERN UNIVERSITY PROBLEM NUMBER USING MINIT SUMMARY OF RESULTS VARIABLE NO. VARIABLE NAME BASIC NON-BASIC ACTIVITY LEVEL OPPORTUNITY COST ROW NO. 1 Dl B -- 2 D2 3 D3 4 D4 5 El NB 6 E2 7 E3 8 E4 9 E5 10 AFC1 11 AFC2 12 AFC3

62 Appendix 23A. Carleton’s linear-programming model: General Mills as a case study
SOLUTION (Cont.) VARIABLE NO. VARIABLE NAME BASIC NON-BASIC ACTIVITY LEVEL OPPORTUNITY COST ROW NO. 13 AFC4 B -- 14 DL1 15 DL2 16 DL3 17 DL4 18 --SLACK ( 10) 19 ( 11) 20 ( 12) 21 ( 13) 22 ( 14) 23 ( 15) 24 ( 16) 25 ( 17) 26 ( 18) 27 ( 19) 28 NB ( 20) 29 ( 21) 30 ( 22)

63 Appendix 23A. Carleton’s linear-programming model: General Mills as a case study
SOLUTION (Cont.) VARIABLE NO. VARIABLE NAME BASIC NON-BASIC ACTIVITY LEVEL OPPORTUNITY COST ROW NO. 31 --SLACK B -- ( 23) 32 NB ( 24) 33 ( 25) 34 ( 26) 35 ( 27) 36 ( 28) 37 ( 29) 38 ( 30) 39 8l ( 31) 40 ( 32) 41 ( 33) 42 ( 34) 43 ( 35)

64 Appendix 23A. Carleton’s linear-programming model: General Mills as a case study
SOLUTION (Cont.) VARIABLE NO. VARIABLE NAME BASIC NON-BASIC ACTIVITY LEVEL OPPORTUNITY COST ROW NO. 44 --SLACK B -- ( 36) 45 ( 37) 46 - -ARTIF NB ( 1) 47 --ARTIF ( 2) 48 ( 3) 49 ( 4) 50 ( 5) 51 ( 6) 52 ( 7) 53 --APTIF ( 8) 54 ( 9) MAXIMUM VALUE OF THE OBJECTIVE FUNCTION = ,202792 CALCULATION TIME WAS SECONDS FOR 21 ITERATIONS.

65 Appendix 23B. General Mills’ actual key financial data
Table 23.B.1

66 Appendix 23B. General Mills’ actual key financial data
Table 23.B.2


Download ppt "Financial Analysis, Planning and Forecasting Theory and Application"

Similar presentations


Ads by Google