Presentation is loading. Please wait.

Presentation is loading. Please wait.

101 meters 0 3 9βˆ’

Similar presentations


Presentation on theme: "101 meters 0 3 9βˆ’ "β€” Presentation transcript:

1 101 meters 0 3 9βˆ’ π‘₯ 2 βˆ’1 2 2π‘₯+1 Concepts to know:
Estimating Integrals using Riemann sums (LRAM, RRAM, MRAM, and Trapezoidal approximations.) Estimate using 4 midpoint rectangles. 101 meters Using geometric formulas to calculate definite integrals. Graph functions and calculate their area. βˆ’ π‘₯ 2 βˆ’1 2 2π‘₯+1

2 βˆ’2 𝑒 π‘₯ 3 βˆ’ (-2e-2) -14 14 a) v(t) = 3 𝑑 2 +6tβˆ’9 b) t>1
3. Calculating definite integrals using the fundamental theorem of calculus. βˆ’4 5 𝑓(π‘₯)𝑑π‘₯ =βˆ’2 1 5 𝑓(π‘₯)𝑑π‘₯ =12 𝑑 𝑑𝑑 βˆ’2 𝑒 π‘₯ 3 βˆ’ (-2e-2) If and -14 βˆ’4 1 𝑓(π‘₯)𝑑π‘₯ =______ Then… 𝑑 𝑑𝑑 1 βˆ’4 𝑓(π‘₯)𝑑π‘₯ =______ 14 And… 𝑑 𝑑𝑑 4. Identifying an integral as a limit of a Riemann sum. lim π‘›β†’βˆž π‘˜=1 𝑛 βˆ’2 3 π‘₯ 2 𝑑π‘₯ lim π‘›β†’βˆž π‘˜=1 𝑛 1 2 ( 2π‘₯+1 )𝑑π‘₯ 5. Motion problems using the definite integral (either by solving for C or using the fundamental theorem.) a) v(t) = 3 𝑑 tβˆ’9 b) t>1 c) x(t) = 𝑑 𝑑 βˆ’9tβˆ’27

3 = = = = = = = = = = = = = 1 6 𝑠𝑖𝑛3π‘₯ 2 | 1 6 (sin 3πœ‹ 2 )2 - 1 6 (sin0)2
7. Finding anti-derivatives using the reverse-chain rule (with or without u-substitution) – must know trigonometric derivatives/integrals, as well as β€˜e’ and ln. πœ‹ 2 1 6 𝑠𝑖𝑛3π‘₯ 2 | = = 1 6 (sin 3πœ‹ 2 ) (sin0)2 = 1 6 (βˆ’1) (0)2 = 1 6 ln⁑( π‘₯ 3 βˆ’1) | 2 = = 𝑙𝑛 2 3 βˆ’1 βˆ’ln⁑( 0 3 βˆ’1) = 𝑙𝑛7 βˆ’ln⁑|βˆ’1| πœ‹ 4 βˆ’1 2 𝑠𝑖𝑛2π‘₯ βˆ’1 | βˆ’1 2 𝑠𝑖𝑛2 πœ‹ βˆ’1 βˆ’[ βˆ’1 2 𝑠𝑖𝑛2 πœ‹ βˆ’1 ] = = πœ‹ 6 βˆ’ βˆ’1 βˆ’[ βˆ’ βˆ’1 ] = βˆ’1 2 βˆ’ βˆ’1 3 βˆ’ βˆ’ = = =


Download ppt "101 meters 0 3 9βˆ’ "

Similar presentations


Ads by Google