Download presentation
Presentation is loading. Please wait.
Published bySukarno Budiaman Modified over 6 years ago
1
Prospects on CP violation in the b sector at hadron colliders
Marta Calvi Università di Milano Bicocca and INFN DAPHNE2004 Frascati th June 2004 Special thanks to F.Bedeschi & G.Punzi for the Tevatron part DAPHNE M. Calvi
2
Unitarity Triangles B decays offer great opportunities to test the SM paradigm of quark mixing and CPV, but also to discover signals of NEW Physics Bd0 p+ p- Bd0 r p BS0 DSK Bd0 DK*0 Bd0 D*p B 0 h h BS0 DS p Bd0 J/y KS0 Bd0 F KS0 BS0 J/y F, BS0 J/y h() Overconstrain the Unitarity Triangles Measure of several CP phases, in different channels Access to rare decays dominated by penguins and box diagrams DAPHNE M. Calvi
3
Experimental requirements
Why hadron colliders? Huge bb cross section (100–500 mb wrt ~1nb at Y(4S) ) Access to all b-hadrons: Bd,u, Bs, b-baryons and Bc Presence of underlying event High tracks multiplicity b produced with wide range of momentum (no beam constraints as for e+e- colliders) High rate of background events The challenge Trigger ! (also fully hadronic decays) Excellent tracking and vertexing Excellent PID Experimental requirements Mass resolution Proper time resolution Exclusive b decays The present and near future: CDF & D0 at TEVATRON LHCb at LHC (startup in 2007) BTeV at TEVATRON (startup in 2009) Next generation: DAPHNE M. Calvi
4
Tevatron performance Tevatron working very well this year
Record luminosity = 7.3 ×1031 sec-1 cm-1 ~ 300 pb-1 on tape ~ pb-1 used for analysis so far RECYCLER had a first successful test CDF/D0 DAQ efficiency ~ 85-90% FUTURE Luminosity goal fb-1 by 2009 CDF & D0 designed for 132 ns will have to work at 396 ns and ~2.7×1032 sec-1cm-2 DAPHNE M. Calvi
5
CDF & D0 in RUN II New Silicon (SVT) tracking at trigger level: select high pT tracks from b, c with IP > 120 (100) mm (first IP trigger at hadron collider!) Upgraded tracking: COT, 7-8 Si layers tracker New Time of Flight: some hadron PID New 2T super conducting Magnet New 8 layers (fiber) tracker New Silicon tracker trigger (displaced vertices) coming soon Improved muon coverage DAPHNE M. Calvi
6
The future: LHCb and BTeV
Forward detectors Accelerator parameters: LHCb BTeV s TeV TeV sbb mb mb sinelelastic mb mb L (cm–2s-1) 1032 Nbb/year 1011 t bunch spacing ns (132) 396 ns wbunch crossing MHz (7.6) 2.5 MHz sz cm cm <Npp int./bco > (2) 6 bb correlation both b hadrons in acceptance qb qb b boost BTeV bg Long decay lenght h DAPHNE M. Calvi
7
LHCb DAPHNE M. Calvi
8
LHCb trigger L0 efficiency L1 efficiency Total L0L1 efficiency 40 MHz
Level-0 Level-1 HLT 40 MHz 1 MHz 40 kHz 200 Hz high pT m, e, g, hadrons (~1-3 GeV) Pile-up veto high impact parameter, high pT tracks (extrapolation VELO-TT ) software trigger on complete event L0 efficiency L1 efficiency Total L0L1 efficiency DAPHNE M. Calvi
9
BTeV DAPHNE M. Calvi
10
BTeV Trigger Level 1 Channel LVL1 eff(%) B p+p- 63 Level 2
Input 2.5 MHz Vertex trigger track and vertex finding in pixels cut on number of detached tracks Level 1 + muon trigger 1/100 Channel LVL1 eff(%) B p+p Bs DsK B- DoK Bo K*g Level 2 Secondary vertex 1/10 Level 3 Full reconstruction Channel LVL1 eff(%) B p+p Bs DsK B- DoK 1/2 Re-evaluation at 396 ns <N>=6 ~ 200 MB/s on tape DAPHNE M. Calvi
11
B Flavour Tagging m JETQ DØ D2 [%] Expectations
Opposite side lepton or K JETQ m B0signal B0opposite D p+ p- K- N/A in progress Same side kaon 3.3 1.7 Jet charge Opp. side kaon 5.5 2.0 1.9 0.9 Same side pion Soft electron 1.0 0.2 0.7 0.1 Soft muon DØ D2 [%] PV b s u Bs K+ Same side K or p Expectations D2 [%] LHCb B0 Bs Muon 1.0 Electron 0.4 Kaon opp.side 2.4 Vertex Charge Same side p / K 0.7 2.1 Combined ~4.7 ~6. eD2 [%] BTeV B0 Bs Muon 1.2 1.3 Electron 0.8 0.9 Kaon opp. side 6.0 5.8 Jet Charge 4.8 4.5 Same side / K 1.8 5.7 Combined 10.0 13.0 LHCb: results are channel dependent DAPHNE M. Calvi
12
B0s B0s mixing - Semileptonic modes
High statistics, good S/N, but limited resolution only moderate xs Bs0 Ds- l+ n X (Ds- fp -, fK+K-) Ds Ds D+ +300 Dspp D+ Yield / lumi ~ 31 pb, just muons D0 prospects: 1.5 sensitivity up to Dms=15ps-1 with 0.5 fb-1 Yield/lumi ~ 7.6 pb muons & elect. DAPHNE M. Calvi
13
B0s B0s mixing - Hadronic modes
Fully reconstructed, best proper time resolution: can resolve fast oscillations. Bs0 Ds- p+ (Ds- fp-, fK+K- ) Dsp D*sX and others S/B ~ D2 = 4% t=67 fs Yield/Lumi=0.7 pb Low statistics: working on BsDsppp and DsK*K/KsK/ppp CDF prospects Yield/Lumi=2. pb D2 = 5% t =50 fs 5 sensitivity to Dms=18 ps-1 with 1.7 fb-1 5 sensitivity to Dms=24 ps-1 with 3.2 fb-1 DsK DAPHNE M. Calvi
14
B0s B0s mixing with Bs0 Dsp : follow up
LHCb events/yr B/S= Proper time s =33 fs Expected unmixed Bs Ds sample in one year of LHCb data taking (fast MC) 5 observation of Bs oscillation: Dms= 68 ps-1/ yr xs reach of BTeV 6 5 4 3 2 1 5 observation of Bs oscillation up to xs=80 ps-1 in 3.2 yr with BsDsp DAPHNE M. Calvi
15
Fs and Γs with BsJ/ f
The “gold plated” decay of Bs. Measure the weak phase of Vts (angle Φs) Expected to be small in SM: Φs = -2 = -22 ~ -0.04 NP B0s ? High sensitivity to NEW Physics contributions in Bsmixing Complicated analysis: PS VV decay 3 contributing amplitudes 2 CP even, 1 CP odd fit angular distribution of decay states as function of proper time. Derive also DGs= G(BsL) - G(BsH ) ( SM expect. DGs/ G~ 0.10 ) DAPHNE M. Calvi
16
Bs J/y (mm) f (KK) at Tevatron
Yield 176 16 in 180 pb-1 Yield 40328 in 225 pb-1 CDF reach: s(sin(Φs)) 0.1 with 2 fb-1 If asymmetry observed with 2fb–1 signal for NEW Physics DAPHNE M. Calvi
17
Fs and Γs with BsJ/f(h) : the future
LHCb: 100 k BsJ/y()f(KK) events/yr B/S< k J/(ee) proper time s = 38 fs (Φs) ~ 3.6O (1 year) If DG / G ~ 0.1 can do a 5 s discovery in one year BTeV: 10k Bs J/h' events/yr k BsJ/h CP autostates: simpler analysis (Φs) ~ 2.8O (1 year) Critical check: DAPHNE M. Calvi
18
Bhh charmless decays
Bd, BdK, BsK, BsKK “Tree” “Penguin” /K /K Bd/s Bd/s /K /K Direct CPV CPV in mixing dir mix Bd , Bs KK ACP(t) = ACP cos(md,s t) + ACP sin(md,s t) Bd K , Bs K ACP = (N+ - N-) / (N+ + N-) dir Time dependent ACP in Bdpp and BsKK measure g independently of penguin pollution (Fleischer and Matias: PRD66 (2002) ) Bs+Bd BRs’ alone provide, via U-spin simmetry, informations of g (R. Fleischer hep-ph/ ) and checks of CKM model (Matias&London, hep-ph/ ) DAPHNE M. Calvi
19
Bhh recostruction at CDF
Bd BdK BsK BsKK MC Separation of B0h+h-contributions in mass peak Bdpp BdKp BsKK BsKp _ K Use dE/dx calibrated on D* events (K/π separation 1.4 ) and kinematics: Mpp vs (1-pmin/pmax)qmin MC MC MC MC DAPHNE M. Calvi
20
Bhh Tevatron results and prospects
CDF (65 pb-1) First evidence of Bs K+K- fs·BR(BsKK) / fd·BR(BdKp) = 0.74±0.20(stat) ±0.22(syst) Direct ACP(BdKp) = 0.02 ± 0.15(stat) ± 0.02(syst) BR(Bd pp)/BR(Bd Kp) = 0.26 ± 0.11(stat) ± 0.06(syst) Consistent with B-factories result Update with current 180 pb-1 sample: ACP(Kp) to 7%, BR(BsKK) to 15% Longer time-scale: DAPHNE M. Calvi
21
More Bd and BsKK
without RICH Bd+- Use of RICH detectors for excellent K/p separation K/p separation sM=17 MeV LHCb events / yr B/S B k <0.7 BK+ k BsKK k BsK k <1.3 BTeV events/ yr B/S B k BK k (A) ~ 0.03 time-dependent CP asymmetries (A) ~ 0.06 DAPHNE M. Calvi
22
from Bd and BsKK
R. Fleischer, Phys. Lett. B459 (1999) Use B and BsKK and exploit U-spin flavour symmetry d = d’ and = ’ d vs “fake” solution 68% and 95% CL regions Adir (B0 +-) = f1(d, , ) Amix(B0 +-) = f2(d, , , d) Adir (BsK+K ) = f3(d’, ’, ) Amix(BsK+K ) = f4(d’, ’, , s) B (95%CL) BsKK (95%CL) Use Φs (BsJ/), Φd(B0J/Ks) can solve for g () = 46 deg (1 year) (input = 65º) DAPHNE M. Calvi
23
Time dependent BsBs asymmetries
from BsDsK Measure Fs from time-dependent rates: BsDsK and BsDsK (+CP conjugates) Use Fs from BsJ/F Model independent analysis g indep. on NP BsDsK Time dependent BsBs asymmetries BsDs Need excellent PID for K/p separ. 5 yrs of data, ms= 20 ps -1 BTeV 7500 events / yr B/S: LHCb: 5400 events/ yr B/S<1.0 ms (ps-1 ) 20 25 30 (+Φs) 140 160 180 20< T1/T2< 20 (+Φs) ~ 80 DAPHNE M. Calvi
24
from B DK* and B DK*
Theoretically clean determination of g Similar to B± DK± but less squashed triangles (no color suppression) Dunietz variant of the Gronau-Wyler method: A1 = A1 A3 A4 A2 2 A ( B DCPK* ) = A3 /2 = 1/2 ( A(B D0K*) + A(B D0K* ) ) 1/2 ( A |A2| ei (+) ) with B D0K*0 self-tagged through K*0 K+p - and DCP KK, pp LHCb 1 year yield B/S B D0 (K+) K*(K+) 3500 0.5 B DCP (KK) K* (K+) 550 3.9 Variant of the Gronau-Wyler method as proposed bt I.Dunietz: Amplitude triangles are not as squashed as in case of B+/- -> DK+/- Difficulty: also detect the D0 CP eignestate Dcp () = 78 deg for 55 < < 105 deg 20 < < 20 deg DAPHNE M. Calvi
25
b s penguin decays ACP in Bd fKs measured at BaBar and Belle hints of possible NP ? Several channels accessible at hadron colliders: 5 significance Bsff Bd fKs, Bd fK*, B+ fK+ Bs f f , Bs r0f , Bs fg , Bs KK , Bs K f … Analyses ongoing in CDF. LHCb: one year (SM BR’s) ~ 800 Bd fKs B/S <1.3 ~ 1200 Bs ff B/S <0.4 ~ 9300 Bs f g B/S <2.4 BR(Bsff) = (1.4±0.6(stat)±0.2(syst)±0.5(BRs))×10-5 DAPHNE M. Calvi
26
a from Br +p- BTeV
s(Mgg)=3.70.3 MeV Time dependent analysis of Dalitz plot to get a independently from penguin contributions BTeV Bor+p k events/yr S/B = 4.1 Boropo k events/yr S/B = 0.3 Fit including resonant and non-resonant backgr. with 1000 tagged events (2 years) minimum c2 a (gen) Rres Rnon a (rec.) da 77.3o 0.2 77.2o 1.6o 0.4 1.8o 93.0o 93.3o 1.9o 111.0o 111.7o 3.9o non-resonant non-rp bkgrd resonant non-rp bkgrd da ~2o- 4o in 2 years ainput=77.3o DAPHNE M. Calvi
27
B0 K*0 +- Standard Model BR(B0K*+-)=(1.20.4)x10-6
determination of |Vts| complementary to Dms/Dmd oscillation measurements Sensitivity to New Physics in: +- invariant mass distribution +- forward-backward asymmetry AFB(s) Annual yield (SM): k B/S <2 (BR) ~ 3% (ACP) ~ 3% LHCb Annual yield (SM): 2.5 k B/S=0.1 DAPHNE M. Calvi
28
Event Yield (untagged)
LHCb BTeV Channel Yield B/S Parameter parameter B0 p+p- 26 k < 0.7 s(A)~0.06 15k 0.33 s(A)~0.03 Bs K+ K- 37 k 0.3 g~5º 19k 0.15 B0 K+ p- 135 k 0.16 62k 0.05 Bs Ds-p+ 80 k 59k Bs Ds-+K+- 5.4 k < 1.0 g+Fs~14º 7.5k 0.14 g+Fs~8º B0 D0 K*0 4.5 k g ~8º B0 J/y(m-m+)KS 216 k 0.8 s(A)~0.022 168k 0.10 s(A)~ 0.017 B0 J/y(e-e+ )KS 1.0 Bs J/y(m-m+ )f 100 k < 0.3 Fs~3.6º Bs J/y(e-e+ )f 20 k 0.7 Bs J/y(m-m+ )h 7 k < 5 2.8k 0.07 Fs~2.8º Bs J/y(m-m+ )h 9.8k 0.03 B0 10.8 k < 3 6.2k 0.24 a~4º B0 K*0 g 35 k s(A)~0.01 B0 K*0 mm 4.4 k < 2.0 2.5k 0.09 B0 KS 800 < 1.3 Bs mm 17.2 5.7 7.7 Event Yield (untagged) 1 year (107s) at L = 2x1032 cm-2 s-1 DAPHNE M. Calvi
29
Conclusions Several results on B physics coming from Tevatron, soon a significant contribution to CKM understanding Future experiments at hadron colliders will offer the opportunity to study many B-meson decay modes with high statistics. precise determination of the CKM parameters through phase measurements spot New Physics by overconstraining the Unitarity Triangles and measure rare decays The goal will be reached thanks to: dedicated triggers excellent mass and decay-time resolution excellent particle identification capability DAPHNE M. Calvi
30
Back up DAPHNE M. Calvi
31
Branching Ratios BR(B0 p+p-) (4.40.9) x10-6 PDG2002 BR(B0 K+ p- )
BR(Bs K+ K- ) = BR(B0K+ p- ) BR(Bs p+ K-) = BR(B0 p+ p- ) BR(Bs Ds- p+ ) (3.00.4) x10-3 = BR(B0D-p+ ) BR(Bs Ds K) (2.50.6) x10-4 calcolato BR(B0 p+p-p0) 2. x10-5 BR(Bs J/y f ) (9.33.3) x10-4 BR(B0 K0* g ) (4.30.4) x10-5 BR(B0 fK0 ) (8.13.) x10-6 BR(Bs ff ) 5.2 x10-6 BR(Bs mm) 3.5 x10-9 Ali BR(B0 K0* mm) (1.20.4) x10-6 DAPHNE M. Calvi
32
Triggering bs’ (and cs’) at Tevatron
conventional new approach Di-lepton CDF and DØ B charmonium Rare B mm Two muons with: pT> 1.5 GeV |h|< 1 pT> GeV |h |<2 electron or muon and displaced track CDF only Semileptonic decays Electron (m) with: pT> 4 (1.5) GeV |h|< 1 and one track with: pT > 2.0 GeV IP > 120 mm Two displaced tracks CDF only n-body hadronic B Two tracks with: pT > 2.0 GeV SpT > 5.5 GeV IP > 120 (100) mm Single-muon DØ only Semileptonic decays One muon with: pT > GeV |h | <2 Displaced track trigger at Level2: the door to B physics Also rare B decays with high S/B DAPHNE M. Calvi
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.