Presentation is loading. Please wait.

Presentation is loading. Please wait.

Math 3 final exam review Part 1

Similar presentations


Presentation on theme: "Math 3 final exam review Part 1"β€” Presentation transcript:

1 Math 3 final exam review Part 1
Unit 3: Linear Programming Unit 3.2: Quadratic Functions Unit 4: Higher-Order Polynomial Functions Unit 7: Exponential & Log Functions Math 3 final exam review Part 1

2 Unit 3: linear programming
Let x= and y= (define your variables) Inequalities Graph cHart corner points Tell your solution (full sentence)

3 Unit 3.2: Quadratic Functions
Standard Form: 𝑦=π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐 Vertex Form: 𝑦=π‘Ž (π‘₯βˆ’β„Ž) 2 +π‘˜ (h, k) is the vertex Domain: βˆ’βˆž, ∞ Range: [π‘˜, ∞) if a>0 (βˆ’βˆž, π‘˜] if a<0

4 Unit 3.2: Quadratic Functions
𝑦= π‘₯ 2 +2π‘₯βˆ’8 Standard Form: 𝑦=π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐 y-intercept: (0, y) Plug in 0 for x (it’s going to be the β€œc” value) x-intercepts/roots: (x, 0), (x, 0) Option 2: π‘₯= βˆ’π‘Β± 𝑏 2 βˆ’4π‘Žπ‘ 2π‘Ž Option 1: πΉπ‘Žπ‘π‘‘π‘œπ‘Ÿ, 𝑠𝑒𝑑 π‘’π‘Žπ‘β„Ž=0 Option 3: π‘…π‘’π‘€π‘Ÿπ‘–π‘‘π‘’ 𝑖𝑛 π‘£π‘’π‘Ÿπ‘‘π‘’π‘₯ π‘“π‘œπ‘Ÿπ‘š, π‘ π‘œπ‘™π‘£π‘’ vertex: (x, y) Option 1: π‘₯= βˆ’π‘ 2π‘Ž , π‘‘β„Žπ‘’π‘› 𝑝𝑙𝑒𝑔 π‘–π‘›π‘‘π‘œ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› π‘‘π‘œ 𝑓𝑖𝑛𝑑 𝑦 Option 2: π‘…π‘’π‘€π‘Ÿπ‘–π‘‘π‘’ 𝑖𝑛 π‘£π‘’π‘Ÿπ‘‘π‘’π‘₯ π‘“π‘œπ‘Ÿπ‘š, π‘£π‘’π‘Ÿπ‘‘π‘’π‘₯ 𝑖𝑠 (β„Ž,π‘˜)

5 Unit 3.2: Quadratic Functions
𝑦= π‘₯ 2 +2π‘₯βˆ’8 Vertex Form: 𝑦=π‘Ž (π‘₯βˆ’β„Ž) 2 +π‘˜ y-intercept: (0, y) Plug in 0 for x x-intercepts/roots: (x, 0), (x, 0) Plug in 0 for y, solve (when you take the square root, don’t for get Β±β€Όβ€Όβ€Ό) vertex: (x, y) Vertex is (h, k)

6 Unit 3.2: quadratic functions
Types of Roots: π‘₯= βˆ’π‘Β± 𝑏 2 βˆ’4π‘Žπ‘ 2π‘Ž Rational Roots: Radicand is a perfect square: Irrational Roots: Radicand is NOT a perfect square:

7 Unit 3: Quadratic Functions
Convert Vertex Form to Standard Form 𝑦=2(π‘₯βˆ’3 ) 2 +5 𝑦=2 π‘₯βˆ’3 π‘₯βˆ’3 +5 𝑦=2( π‘₯ 2 βˆ’6π‘₯+9)+5 𝑦=(2 π‘₯ 2 βˆ’12π‘₯+18)+5 𝑦=2 π‘₯ 2 βˆ’12π‘₯+23 Convert Standard Form to Vertex Form 𝑦=2 π‘₯ 2 βˆ’12π‘₯+23 π‘¦βˆ’23=2 π‘₯ 2 βˆ’12π‘₯ π‘¦βˆ’23 2 = π‘₯ 2 βˆ’6π‘₯ π‘¦βˆ’ = π‘₯ 2 βˆ’6π‘₯+9 π‘¦βˆ’ =(π‘₯βˆ’3)(π‘₯βˆ’3) π‘¦βˆ’ = (π‘₯βˆ’3) 2 π‘¦βˆ’23 2 = (π‘₯βˆ’3) 2 βˆ’9 π‘¦βˆ’23= 2(π‘₯βˆ’3) 2 βˆ’18 𝑦= 2(π‘₯βˆ’3) 2 +5

8 Unit 3: Quadratic Functions
Focus & Directrix 𝑦= 1 4𝑝 (π‘₯βˆ’β„Ž ) 2 +π‘˜ P is the distance from vertex to focus, will be negative if parabola opens down

9 Unit 4: Higher Order Polynomial Functions
End Behavior Cubic, a>0 π‘Žπ‘  π‘₯β†’βˆž, 𝑦 𝑖𝑛𝑐 π‘Žπ‘  π‘₯β†’βˆ’βˆž, 𝑦 𝑑𝑒𝑐 Linear, m>0 π‘Žπ‘  π‘₯β†’βˆž, 𝑦 𝑖𝑛𝑐 π‘Žπ‘  π‘₯β†’βˆ’βˆž, 𝑦 𝑑𝑒𝑐 Cubic, a<0 π‘Žπ‘  π‘₯β†’βˆž, 𝑦 𝑑𝑒𝑐 π‘Žπ‘  π‘₯β†’βˆ’βˆž, 𝑦 𝑖𝑛𝑐 Linear, m<0 π‘Žπ‘  π‘₯β†’βˆž, 𝑦 𝑑𝑒𝑐 π‘Žπ‘  π‘₯β†’βˆ’βˆž, 𝑦 𝑖𝑛𝑐 Quadratic, a>0 π‘Žπ‘  π‘₯β†’βˆž, 𝑦 𝑖𝑛𝑐 π‘Žπ‘  π‘₯β†’βˆ’βˆž, 𝑦 𝑖𝑛𝑐 Quartic, a>0 π‘Žπ‘  π‘₯β†’βˆž, 𝑦 𝑖𝑛𝑐 π‘Žπ‘  π‘₯β†’βˆ’βˆž, 𝑦 𝑖𝑛𝑐 Quadratic, a<0 π‘Žπ‘  π‘₯β†’βˆž, 𝑦 𝑑𝑒𝑐 π‘Žπ‘  π‘₯β†’βˆ’βˆž, 𝑦 𝑑𝑒𝑐 Quartic, a<0 π‘Žπ‘  π‘₯β†’βˆž, 𝑦 𝑑𝑒𝑐 π‘Žπ‘  π‘₯β†’βˆ’βˆž, 𝑦 𝑑𝑒𝑐

10 Unit 4: Higher Order Polynomial functions
Solving when you can’t see all x-intercepts 1st Step: How many solutions? Cubic (π‘₯ 3 ): 3 Quartic (π‘₯ 4 ): 4 Quintic (π‘₯ 5 ): 5

11 Unit 7: exponential & logarithmic functions
Growth: 𝑦=π‘Ž 𝑏 π‘₯ b>1 Decay: 𝑦=π‘Ž 𝑏 π‘₯ 0<b<1 Exponential Functions 𝑦=π‘Ž 𝑏 π‘₯βˆ’β„Ž +π‘˜ Growth/Decay Factor Initial Amount Domain: βˆ’βˆž, ∞ Range: π‘˜, ∞ if a>0 βˆ’βˆž, π‘˜ if a<0 All exponential functions have asymptotes at horizontal lines (e.g. y=0 for the graphs above, as the y values will never reach 0)

12 Unit 7: exponential & logarithmic functions
Exponential Evaluating Rate: Percent/100 Growth: 𝑦=π‘Ž(1+π‘Ÿ ) π‘₯ Decay: 𝑦=π‘Ž(1βˆ’π‘Ÿ ) π‘₯ Rate: Percent/100 Compound Interest: 𝑦=π‘Ž(1+ π‘Ÿ 𝑛 ) 𝑛π‘₯ Number of times compounded per year Compound Continuously: 𝐴=𝑃 𝑒 π‘Ÿπ‘‘ Principle (same as β€œa”) Amount in account at end (same as β€œy”)

13 Unit 7: exponential & logarithmic functions
Inverses: Reflections over y=x Inverse Functions: Functions that β€œundo” one another through opposite operations. For equations: Switch x and y, solve for y For graphs: Reflect over line y=x For points: Switch x and y

14 Unit 7: exponential & logarithmic functions
Composition of Functions

15 Unit 7: exponential & logarithmic functions
Composition of Functions with their Inverses

16 Unit 7: exponential & logarithmic functions
With Logarithms: 2( 5) 0.3π‘₯ =30 ( 5) 0.3π‘₯ =15 log 5 (5 0.3π‘₯ )= log 5 (15) 0.3π‘₯= log⁑(15) log⁑(5) π‘₯=5.61 Exponential Solving Without Logarithms: Isolate base with exponent Take log of both sides Evaluate log πŸ“ πŸπŸ“ Solve

17 Unit 7: exponential & logarithmic functions
Logarithm Solving Isolate logarithm Exponentiate Solve Check for extraneous solutions


Download ppt "Math 3 final exam review Part 1"

Similar presentations


Ads by Google