Download presentation
Presentation is loading. Please wait.
1
Metal-Semiconductor Junction
March-28, 2016 Contents: 1. Ideal metal-semiconductor junction outside equilibrium
2
Key questions In a metal-semiconductor junction under bias, is there current flow? If so, how exactly does it happen? What are the key dependences of the current in a metal- semiconductor junction?
3
1. Metal-semiconductor junction outside TE
I-V Characteristics Few minority carriers anywhere ๏ฎ ๐๐๐๐๐๐๐ก๐ฆ ๐๐๐๐๐๐๐ ๐๐๐ฃ๐๐๐ Bottleneck: transport through SCR
4
In forward bias, ๐ฝ โ ๐ ๐๐/๐๐
In reverse bias, ๐ฝ ๐ ๐๐ก๐ข๐๐๐ก๐๐ ๐ค๐๐กโ ๐
5
Balance between electron drift and diffusion in SCR:
๏ท TE: perfectly balanced ๏ท forward bias: โฐ โ โ๐๐๐๐๐ข๐ ๐๐๐>๐๐๐๐๐ก ๏ท reverse bias: โฐ โ โ๐๐๐๐๐ข๐ ๐๐๐<๐๐๐๐๐ก Net current due to imbalance of drift and diffusion Drift-diffusion model Start with electron current equation: ๐ฝ ๐ =๐ ๐ ๐ ๐โฐ+๐ ๐ท ๐ ๐๐ ๐๐ฅ =๐ ๐ท ๐ (โ ๐๐ ๐๐ ๐๐ ๐๐ฅ + ๐๐ ๐๐ฅ ) Multiply by exp(- ๐๐ ๐๐ ): ๐ฝ ๐ ๐๐ฅ๐ โ ๐๐ ๐๐ =๐ ๐ท ๐ โ ๐๐ ๐๐ ๐๐ ๐๐ฅ ๐๐ฅ๐ โ ๐๐ ๐๐ + ๐๐ ๐๐ฅ ๐๐ฅ๐ โ ๐๐ ๐๐ =๐ ๐ท ๐ ๐ ๐๐ฅ ๐๐๐ฅ๐ โ ๐๐ ๐๐
6
โ
๐ฅ =โ( โ
๐๐ โ๐)( ๐ฅ 2 ๐ฅ ๐ 2 โ 2๐ฅ ๐ฅ ๐ +1) for 0 โค๐ฅ โค ๐ฅ ๐
Integrate along the depletion region: ๏ท left-hand side: ๐ฝ ๐ โ๐ฝ (negligible hole contribution), and J independent of x: 0 ๐ฅ ๐ ๐ฝ ๐ exp โ ๐โ
๐๐ ๐๐ฅ=๐ฝ 0 ๐ฅ ๐ exp โ ๐โ
๐๐ ๐๐ฅ ๏ท right-hand side: 0 ๐ฅ ๐ ๐ ๐ท ๐ ๐ ๐๐ฅ ๐๐๐ฅ๐ โ ๐โ
๐๐ ๐๐ฅ=๐ ๐ท ๐ ๐๐๐ฅ๐(โ ๐โ
๐๐ ) For left-hand side, use โ
(๐ฅ) obtained earlier: โ
๐ฅ =โ( โ
๐๐ โ๐)( ๐ฅ 2 ๐ฅ ๐ 2 โ 2๐ฅ ๐ฅ ๐ +1) for 0 โค๐ฅ โค ๐ฅ ๐
7
For right-hand side, use boundary conditions:
๏ท At ๐ฅ=0: โ
0 =โ( โ
๐๐ โ๐) ๐ 0 = ๐ ๐ท ๐๐ฅ๐ โ๐( โ
๐๐ โ๐) ๐๐ = ๐ ๐ถ ๐๐ฅ๐ โ๐ ๐ ๐ต๐ ๐๐ ๐๐ฅ๐ ๐๐ ๐๐ ๏ท At ๐ฅ= ๐ฅ ๐ : โ
๐ฅ ๐ =0 ๐ ๐ฅ ๐ = ๐ ๐ท Do integral, substitute boundary conditions and get: ๐ฝ= ๐ 2 ๐ท ๐ ๐ ๐ ๐๐ 2๐ โ
๐๐ โ๐ ๐ ๐ท ๐ ๐๐ฅ๐ โ๐ ๐ ๐ต๐ ๐๐ (๐๐ฅ๐ ๐๐ ๐๐ โ1)
8
Total current, multiply ๐ฝ by area ๐ด ๐ :
๐ผ= ๐ผ ๐ (๐๐ฅ๐ ๐๐ ๐๐ โ1) ๐ผ ๐ โก๐ ๐๐ก๐ข๐๐๐ก๐๐๐ ๐๐ข๐๐๐๐๐ก (๐ด) Think about slope!
9
Key dependencies of drift-diffusion model:
๏ท ๐ผ โ๐๐ฅ๐ ๐๐ ๐๐ โ1 ๏ท ๐ผ ๐ โ๐๐ฅ๐ ๐ ๐ ๐ต๐ ๐๐ ๏ท ๐ผ ๐ weakly dependent on ๐
10
Temperature dependence of ๐ผ ๐ :
๐ผ ๐ โ ๐ 1/2 ๐๐ฅ๐ โ๐ ๐ ๐ต๐ ๐๐ Not seen in practice! What one finds experimentally is: ๐ผ ๐ โ ๐ 2 ๐๐ฅ๐ โ๐ ๐ ๐ต๐ ๐๐ Made implicit assumption: ๐๐ข๐๐ ๐โ๐๐๐ข๐๐๐๐๐๐๐ข๐ across SCR โ drift/diffusion balance only slightly broken. Quasi-equilibrium assumption is good if: ๐ฝ โช ๐ฝ ๐ ๐๐๐๐๐ก , ๐ฝ ๐ ๐๐๐๐๐ข๐ ๐๐๐
11
Thermionic-emission theory
๐ถ๐๐๐ ๐๐ ๐กโ๐๐ ๐ ๐๐๐๐ ๐๐๐๐ ๐๐๐กโ ๐๐๐๐ ๐กโ๐ ๐๐๐ก๐๐๐๐๐๐, ๐๐๐๐ข๐๐๐๐๐ก๐ ๐๐ ๐๐๐๐๐ก ๐๐๐ ๐๐๐๐๐ข๐ ๐๐๐ ๐๐ ๐๐๐ก ๐ค๐๐๐ In the last mean free path, ๏ท electrons do not suffer any collisions, ๏ท only those with enough ๐ธ ๐พ get over the barrier ๏ท actually, only half of those with enough ๐ธ ๐พ do ๏ท this is bottleneck: ๐กโ๐๐๐๐๐๐๐๐ ๐๐๐๐ ๐ ๐๐๐ ๐กโ๐๐๐๐ฆ
12
In steady state: ๐ฝ ๐ก โ ๐ฝ ๐ =โ๐๐(๐ฅ) ๐ฃ ๐ (๐ฅ) Focus on bottleneck at ๐ฅ=0: ๐ฝ=โ๐๐(0) ๐ฃ ๐ (0)
13
First compute ๐(0): ๐(0) is only a fraction of the carriers present at ๐( ๐ ๐๐ ): ๐ 0 = ๐( ๐ ๐๐ ) 2 ๐๐ฅ๐ ๐[โ
0 โ โ
๐ ๐๐ ] ๐๐ If rest of SCR is in ๐๐ข๐๐ ๐โ๐๐๐ข๐๐๐๐๐๐๐ข๐ ๐ ๐ ๐๐ โ ๐ ๐ท ๐๐ฅ๐ ๐โ
( ๐ ๐๐ ) ๐๐ Also: โ
0 =โ( โ
๐๐ โ๐) Then: ๐ 0 = ๐ ๐ท 2 ๐๐ฅ๐ โ๐( โ
๐๐ โ๐) ๐๐ = ๐ ๐ถ 2 ๐๐ฅ๐ โ๐( ๐ ๐ต๐ โ๐) ๐๐
14
Compute ๐ฃ ๐ (0): Over the last mean free path, carriers basically travel at ๐ฃ ๐กโ . But, velocity pointing at different angles. After taking care of statistics: ๐ฃ ๐ 0 =โ ๐ฃ ๐กโ 2 =โ 2๐๐ ๐ ๐ ๐ (minus sign indicates that carriers are traveling against ๐ฅ)
15
Finally, compute electron current:
๐ฝ= ๐ด โ ๐ 2 ๐๐ฅ๐ โ๐ ๐ ๐ต๐ ๐๐ ๐๐ฅ๐ ๐๐ ๐๐ with: ๐ด โ = 4๐๐ ๐ ๐ ๐ 2 โ 3 ๐ด โ โก๐
๐๐โ๐๐๐๐ ๐ ๐ โฒ ๐ ๐๐๐๐ ๐ก๐๐๐ก Still must subtract electron injection from metal to semiconductor in TE, so that when V ๏ฎ 0, J ๏ฎ 0: ๐ฝ= ๐ด โ ๐ 2 ๐๐ฅ๐ โ๐ ๐ ๐ต๐ ๐๐ (๐๐ฅ๐ ๐๐ ๐๐ โ1) Valid in forward and reverse bias.
16
๐ฝ= ๐ด โ ๐ 2 ๐๐ฅ๐ โ๐ ๐ ๐ต๐ ๐๐ (๐๐ฅ๐ ๐๐ ๐๐ โ1)
In terms of current (I), ๐ผ= ๐ด ๐ ๐ด โ ๐ 2 ๐๐ฅ๐ โ๐ ๐ ๐ต๐ ๐๐ ๐๐ฅ๐ ๐๐ ๐๐ โ1 = ๐ผ ๐ (๐๐ฅ๐ ๐๐ ๐๐ โ1) ๐ผ ๐ = ๐ด ๐ ๐ด โ ๐ 2 ๐๐ฅ๐ โ๐ ๐ ๐ต๐ ๐๐ What is the meaning of ๐ผ ๐ / ๐ 2 ?
18
Key conclusions Minority carriers play no role in I-V characteristics of MS junction. Energy barrier preventing carrier flow from S to M modulated by V, barrier to carrier flow from M to S unchanged by V ๏ rectifying behavior: ๐ผ= ๐ผ ๐ (๐๐ฅ๐ ๐๐ ๐๐ โ1) ๐ท๐๐๐๐กโ๐๐๐๐๐ข๐ ๐๐๐ ๐กโ๐๐๐๐ฆ of current: small perturbation of balance of drift and diffusion inside SCR. ๐ท๐๐๐๐กโ๐๐๐๐๐ข๐ ๐๐๐ ๐กโ๐๐๐๐ฆ of current exhibits several dependences observed in devices, but fails temperature dependence. ๐โ๐๐๐๐๐๐๐๐ ๐๐๐๐๐ ๐๐๐ ๐กโ๐๐๐๐ฆ of current: bottleneck is flow of carriers over energy barrier at M-S interface. Transport at this bottleneck is of a ๐๐๐๐๐๐ ๐ก๐๐ ๐๐๐ก๐ข๐๐.
19
Homework Refer to the I-V data of a Schottky diode that are posted in ABEEK. Plot I-V in linear-linear and log-linear scales. Model measured I-V characteristics of the Schottky diode using either drift-diffusion theory or thermionic-emission theory. Due by 3 PM of April-4.
20
Student Presentations
Read a paper below and present a summary. โLow Ohmic Contact to Silicon with a Magnesium/Aluminum Layered Metallizationโ, Journal of Applied Physics 59, no. 5, pp , 1986, by Akiya Masahiro et al. When April-4. Any volunteer?
21
Homework: Model I-V data of the Schottky diode. Due by March-28.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.