Presentation is loading. Please wait.

Presentation is loading. Please wait.

Metal-Semiconductor Junction

Similar presentations


Presentation on theme: "Metal-Semiconductor Junction"โ€” Presentation transcript:

1 Metal-Semiconductor Junction
March-28, 2016 Contents: 1. Ideal metal-semiconductor junction outside equilibrium

2 Key questions In a metal-semiconductor junction under bias, is there current flow? If so, how exactly does it happen? What are the key dependences of the current in a metal- semiconductor junction?

3 1. Metal-semiconductor junction outside TE
I-V Characteristics Few minority carriers anywhere ๏‚ฎ ๐‘š๐‘Ž๐‘—๐‘œ๐‘Ÿ๐‘–๐‘ก๐‘ฆ ๐‘๐‘Ž๐‘Ÿ๐‘Ÿ๐‘–๐‘’๐‘Ÿ ๐‘‘๐‘’๐‘ฃ๐‘–๐‘๐‘’ Bottleneck: transport through SCR

4 In forward bias, ๐ฝ โˆ ๐‘’ ๐‘ž๐‘‰/๐‘˜๐‘‡
In reverse bias, ๐ฝ ๐‘ ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘  ๐‘ค๐‘–๐‘กโ„Ž ๐‘‰

5 Balance between electron drift and diffusion in SCR:
๏‚ท TE: perfectly balanced ๏‚ท forward bias: โ„ฐ โ†“ โ‡’๐‘‘๐‘–๐‘“๐‘“๐‘ข๐‘ ๐‘–๐‘œ๐‘›>๐‘‘๐‘Ÿ๐‘–๐‘“๐‘ก ๏‚ท reverse bias: โ„ฐ โ†‘ โ‡’๐‘‘๐‘–๐‘“๐‘“๐‘ข๐‘ ๐‘–๐‘œ๐‘›<๐‘‘๐‘Ÿ๐‘–๐‘“๐‘ก Net current due to imbalance of drift and diffusion Drift-diffusion model Start with electron current equation: ๐ฝ ๐‘’ =๐‘ž ๐œ‡ ๐‘’ ๐‘›โ„ฐ+๐‘ž ๐ท ๐‘’ ๐‘‘๐‘› ๐‘‘๐‘ฅ =๐‘ž ๐ท ๐‘’ (โˆ’ ๐‘ž๐‘› ๐‘˜๐‘‡ ๐‘‘๐œ™ ๐‘‘๐‘ฅ + ๐‘‘๐‘› ๐‘‘๐‘ฅ ) Multiply by exp(- ๐‘ž๐œ™ ๐‘˜๐‘‡ ): ๐ฝ ๐‘’ ๐‘’๐‘ฅ๐‘ โˆ’ ๐‘ž๐œ™ ๐‘˜๐‘‡ =๐‘ž ๐ท ๐‘’ โˆ’ ๐‘ž๐‘› ๐‘˜๐‘‡ ๐‘‘๐œ™ ๐‘‘๐‘ฅ ๐‘’๐‘ฅ๐‘ โˆ’ ๐‘ž๐œ™ ๐‘˜๐‘‡ + ๐‘‘๐‘› ๐‘‘๐‘ฅ ๐‘’๐‘ฅ๐‘ โˆ’ ๐‘ž๐œ™ ๐‘˜๐‘‡ =๐‘ž ๐ท ๐‘’ ๐‘‘ ๐‘‘๐‘ฅ ๐‘›๐‘’๐‘ฅ๐‘ โˆ’ ๐‘ž๐œ™ ๐‘˜๐‘‡

6 โˆ… ๐‘ฅ =โˆ’( โˆ… ๐‘๐‘– โˆ’๐‘‰)( ๐‘ฅ 2 ๐‘ฅ ๐‘‘ 2 โˆ’ 2๐‘ฅ ๐‘ฅ ๐‘‘ +1) for 0 โ‰ค๐‘ฅ โ‰ค ๐‘ฅ ๐‘‘
Integrate along the depletion region: ๏‚ท left-hand side: ๐ฝ ๐‘’ โ‰ˆ๐ฝ (negligible hole contribution), and J independent of x: 0 ๐‘ฅ ๐‘‘ ๐ฝ ๐‘’ exp โˆ’ ๐‘žโˆ… ๐‘˜๐‘‡ ๐‘‘๐‘ฅ=๐ฝ 0 ๐‘ฅ ๐‘‘ exp โˆ’ ๐‘žโˆ… ๐‘˜๐‘‡ ๐‘‘๐‘ฅ ๏‚ท right-hand side: 0 ๐‘ฅ ๐‘‘ ๐‘ž ๐ท ๐‘’ ๐‘‘ ๐‘‘๐‘ฅ ๐‘›๐‘’๐‘ฅ๐‘ โˆ’ ๐‘žโˆ… ๐‘˜๐‘‡ ๐‘‘๐‘ฅ=๐‘ž ๐ท ๐‘’ ๐‘›๐‘’๐‘ฅ๐‘(โˆ’ ๐‘žโˆ… ๐‘˜๐‘‡ ) For left-hand side, use โˆ…(๐‘ฅ) obtained earlier: โˆ… ๐‘ฅ =โˆ’( โˆ… ๐‘๐‘– โˆ’๐‘‰)( ๐‘ฅ 2 ๐‘ฅ ๐‘‘ 2 โˆ’ 2๐‘ฅ ๐‘ฅ ๐‘‘ +1) for 0 โ‰ค๐‘ฅ โ‰ค ๐‘ฅ ๐‘‘

7 For right-hand side, use boundary conditions:
๏‚ท At ๐‘ฅ=0: โˆ… 0 =โˆ’( โˆ… ๐‘๐‘– โˆ’๐‘‰) ๐‘› 0 = ๐‘ ๐ท ๐‘’๐‘ฅ๐‘ โˆ’๐‘ž( โˆ… ๐‘๐‘– โˆ’๐‘‰) ๐‘˜๐‘‡ = ๐‘ ๐ถ ๐‘’๐‘ฅ๐‘ โˆ’๐‘ž ๐œ‘ ๐ต๐‘› ๐‘˜๐‘‡ ๐‘’๐‘ฅ๐‘ ๐‘ž๐‘‰ ๐‘˜๐‘‡ ๏‚ท At ๐‘ฅ= ๐‘ฅ ๐‘‘ : โˆ… ๐‘ฅ ๐‘‘ =0 ๐‘› ๐‘ฅ ๐‘‘ = ๐‘ ๐ท Do integral, substitute boundary conditions and get: ๐ฝ= ๐‘ž 2 ๐ท ๐‘’ ๐‘ ๐‘ ๐‘˜๐‘‡ 2๐‘ž โˆ… ๐‘๐‘– โˆ’๐‘‰ ๐‘ ๐ท ๐œ– ๐‘’๐‘ฅ๐‘ โˆ’๐‘ž ๐œ‘ ๐ต๐‘› ๐‘˜๐‘‡ (๐‘’๐‘ฅ๐‘ ๐‘ž๐‘‰ ๐‘˜๐‘‡ โˆ’1)

8 Total current, multiply ๐ฝ by area ๐ด ๐‘— :
๐ผ= ๐ผ ๐‘† (๐‘’๐‘ฅ๐‘ ๐‘ž๐‘‰ ๐‘˜๐‘‡ โˆ’1) ๐ผ ๐‘† โ‰ก๐‘ ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก (๐ด) Think about slope!

9 Key dependencies of drift-diffusion model:
๏‚ท ๐ผ โˆ๐‘’๐‘ฅ๐‘ ๐‘ž๐‘‰ ๐‘˜๐‘‡ โˆ’1 ๏‚ท ๐ผ ๐‘† โˆ๐‘’๐‘ฅ๐‘ ๐‘ž ๐œ‘ ๐ต๐‘› ๐‘˜๐‘‡ ๏‚ท ๐ผ ๐‘† weakly dependent on ๐‘‰

10 Temperature dependence of ๐ผ ๐‘† :
๐ผ ๐‘† โˆ ๐‘‡ 1/2 ๐‘’๐‘ฅ๐‘ โˆ’๐‘ž ๐œ‘ ๐ต๐‘› ๐‘˜๐‘‡ Not seen in practice! What one finds experimentally is: ๐ผ ๐‘† โˆ ๐‘‡ 2 ๐‘’๐‘ฅ๐‘ โˆ’๐‘ž ๐œ‘ ๐ต๐‘› ๐‘˜๐‘‡ Made implicit assumption: ๐‘ž๐‘ข๐‘Ž๐‘ ๐‘–โˆ’๐‘’๐‘ž๐‘ข๐‘–๐‘™๐‘–๐‘๐‘Ÿ๐‘–๐‘ข๐‘š across SCR โ‡’ drift/diffusion balance only slightly broken. Quasi-equilibrium assumption is good if: ๐ฝ โ‰ช ๐ฝ ๐‘’ ๐‘‘๐‘Ÿ๐‘–๐‘“๐‘ก , ๐ฝ ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘ข๐‘ ๐‘–๐‘œ๐‘›

11 Thermionic-emission theory
๐ถ๐‘™๐‘œ๐‘ ๐‘’๐‘Ÿ ๐‘กโ„Ž๐‘Ž๐‘› ๐‘Ž ๐‘š๐‘’๐‘Ž๐‘› ๐‘“๐‘Ÿ๐‘’๐‘’ ๐‘๐‘Ž๐‘กโ„Ž ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’, ๐‘Ž๐‘Ÿ๐‘”๐‘ข๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘‘๐‘Ÿ๐‘–๐‘“๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘‘๐‘–๐‘“๐‘“๐‘ข๐‘ ๐‘–๐‘œ๐‘› ๐‘‘๐‘œ ๐‘›๐‘œ๐‘ก ๐‘ค๐‘œ๐‘Ÿ๐‘˜ In the last mean free path, ๏‚ท electrons do not suffer any collisions, ๏‚ท only those with enough ๐ธ ๐พ get over the barrier ๏‚ท actually, only half of those with enough ๐ธ ๐พ do ๏‚ท this is bottleneck: ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘–๐‘œ๐‘›๐‘–๐‘ ๐‘’๐‘š๐‘–๐‘ ๐‘ ๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘ฆ

12 In steady state: ๐ฝ ๐‘ก โ‰ˆ ๐ฝ ๐‘’ =โˆ’๐‘ž๐‘›(๐‘ฅ) ๐‘ฃ ๐‘’ (๐‘ฅ) Focus on bottleneck at ๐‘ฅ=0: ๐ฝ=โˆ’๐‘ž๐‘›(0) ๐‘ฃ ๐‘’ (0)

13 First compute ๐‘›(0): ๐‘›(0) is only a fraction of the carriers present at ๐‘›( ๐‘™ ๐‘๐‘’ ): ๐‘› 0 = ๐‘›( ๐‘™ ๐‘๐‘’ ) 2 ๐‘’๐‘ฅ๐‘ ๐‘ž[โˆ… 0 โˆ’ โˆ… ๐‘™ ๐‘๐‘’ ] ๐‘˜๐‘‡ If rest of SCR is in ๐‘ž๐‘ข๐‘Ž๐‘ ๐‘–โˆ’๐‘’๐‘ž๐‘ข๐‘–๐‘™๐‘–๐‘๐‘Ÿ๐‘–๐‘ข๐‘š ๐‘› ๐‘™ ๐‘๐‘’ โ‰ˆ ๐‘ ๐ท ๐‘’๐‘ฅ๐‘ ๐‘žโˆ…( ๐‘™ ๐‘๐‘’ ) ๐‘˜๐‘‡ Also: โˆ… 0 =โˆ’( โˆ… ๐‘๐‘– โˆ’๐‘‰) Then: ๐‘› 0 = ๐‘ ๐ท 2 ๐‘’๐‘ฅ๐‘ โˆ’๐‘ž( โˆ… ๐‘๐‘– โˆ’๐‘‰) ๐‘˜๐‘‡ = ๐‘ ๐ถ 2 ๐‘’๐‘ฅ๐‘ โˆ’๐‘ž( ๐œ‘ ๐ต๐‘› โˆ’๐‘‰) ๐‘˜๐‘‡

14 Compute ๐‘ฃ ๐‘’ (0): Over the last mean free path, carriers basically travel at ๐‘ฃ ๐‘กโ„Ž . But, velocity pointing at different angles. After taking care of statistics: ๐‘ฃ ๐‘’ 0 =โˆ’ ๐‘ฃ ๐‘กโ„Ž 2 =โˆ’ 2๐‘˜๐‘‡ ๐œ‹ ๐‘š ๐‘› (minus sign indicates that carriers are traveling against ๐‘ฅ)

15 Finally, compute electron current:
๐ฝ= ๐ด โˆ— ๐‘‡ 2 ๐‘’๐‘ฅ๐‘ โˆ’๐‘ž ๐œ‘ ๐ต๐‘› ๐‘˜๐‘‡ ๐‘’๐‘ฅ๐‘ ๐‘ž๐‘‰ ๐‘˜๐‘‡ with: ๐ด โˆ— = 4๐œ‹๐‘ž ๐‘š ๐‘› ๐‘˜ 2 โ„Ž 3 ๐ด โˆ— โ‰ก๐‘…๐‘–๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘‘๐‘ ๐‘œ ๐‘› โ€ฒ ๐‘  ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก Still must subtract electron injection from metal to semiconductor in TE, so that when V ๏‚ฎ 0, J ๏‚ฎ 0: ๐ฝ= ๐ด โˆ— ๐‘‡ 2 ๐‘’๐‘ฅ๐‘ โˆ’๐‘ž ๐œ‘ ๐ต๐‘› ๐‘˜๐‘‡ (๐‘’๐‘ฅ๐‘ ๐‘ž๐‘‰ ๐‘˜๐‘‡ โˆ’1) Valid in forward and reverse bias.

16 ๐ฝ= ๐ด โˆ— ๐‘‡ 2 ๐‘’๐‘ฅ๐‘ โˆ’๐‘ž ๐œ‘ ๐ต๐‘› ๐‘˜๐‘‡ (๐‘’๐‘ฅ๐‘ ๐‘ž๐‘‰ ๐‘˜๐‘‡ โˆ’1)
In terms of current (I), ๐ผ= ๐ด ๐‘— ๐ด โˆ— ๐‘‡ 2 ๐‘’๐‘ฅ๐‘ โˆ’๐‘ž ๐œ‘ ๐ต๐‘› ๐‘˜๐‘‡ ๐‘’๐‘ฅ๐‘ ๐‘ž๐‘‰ ๐‘˜๐‘‡ โˆ’1 = ๐ผ ๐‘† (๐‘’๐‘ฅ๐‘ ๐‘ž๐‘‰ ๐‘˜๐‘‡ โˆ’1) ๐ผ ๐‘† = ๐ด ๐‘— ๐ด โˆ— ๐‘‡ 2 ๐‘’๐‘ฅ๐‘ โˆ’๐‘ž ๐œ‘ ๐ต๐‘› ๐‘˜๐‘‡ What is the meaning of ๐ผ ๐‘† / ๐‘‡ 2 ?

17

18 Key conclusions Minority carriers play no role in I-V characteristics of MS junction. Energy barrier preventing carrier flow from S to M modulated by V, barrier to carrier flow from M to S unchanged by V ๏ƒž rectifying behavior: ๐ผ= ๐ผ ๐‘† (๐‘’๐‘ฅ๐‘ ๐‘ž๐‘‰ ๐‘˜๐‘‡ โˆ’1) ๐ท๐‘Ÿ๐‘–๐‘“๐‘กโˆ’๐‘‘๐‘–๐‘“๐‘“๐‘ข๐‘ ๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘ฆ of current: small perturbation of balance of drift and diffusion inside SCR. ๐ท๐‘Ÿ๐‘–๐‘“๐‘กโˆ’๐‘‘๐‘–๐‘“๐‘“๐‘ข๐‘ ๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘ฆ of current exhibits several dependences observed in devices, but fails temperature dependence. ๐‘‡โ„Ž๐‘’๐‘Ÿ๐‘š๐‘–๐‘œ๐‘›๐‘–๐‘ ๐‘’๐‘š๐‘š๐‘–๐‘ ๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘ฆ of current: bottleneck is flow of carriers over energy barrier at M-S interface. Transport at this bottleneck is of a ๐‘๐‘Ž๐‘™๐‘™๐‘–๐‘ ๐‘ก๐‘–๐‘ ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’.

19 Homework Refer to the I-V data of a Schottky diode that are posted in ABEEK. Plot I-V in linear-linear and log-linear scales. Model measured I-V characteristics of the Schottky diode using either drift-diffusion theory or thermionic-emission theory. Due by 3 PM of April-4.

20 Student Presentations
Read a paper below and present a summary. โ€œLow Ohmic Contact to Silicon with a Magnesium/Aluminum Layered Metallizationโ€, Journal of Applied Physics 59, no. 5, pp , 1986, by Akiya Masahiro et al. When April-4. Any volunteer?

21 Homework: Model I-V data of the Schottky diode. Due by March-28.


Download ppt "Metal-Semiconductor Junction"

Similar presentations


Ads by Google