Download presentation
Presentation is loading. Please wait.
Published byΚύμα Λαγός Modified over 6 years ago
1
Lecture G: Multiple-View Reconstruction from Scene Knowledge
Breakthroughs in 3D Reconstruction and Motion Analysis Lecture G: Multiple-View Reconstruction from Scene Knowledge Yi Ma Perception & Decision Laboratory Decision & Control Group, CSL Image Formation & Processing Group, Beckman Electrical & Computer Engineering Dept., UIUC September 15, 2003 ICRA2003, Taipei
2
INTRODUCTION: Scene knowledge and symmetry
This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. Symmetry is ubiquitous in man-made or natural environments September 15, 2003 ICRA2003, Taipei
3
INTRODUCTION: Scene knowledge and symmetry
Parallelism (vanishing point) Orthogonality Congruence Self-similarity This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
4
INTRODUCTION: Wrong assumptions
Ames room illusion Necker’s cube illusion This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
5
INTRODUCTION: Related literature
Mathematics: Hilbert 18th problem: Fedorov 1891, Hilbert 1901, Bieberbach 1910, George Polya 1924, Weyl 1952 Cognitive Science: Figure “goodness”: Gestalt theorists (1950s), Garner’74, Chipman’77, Marr’82, Palmer’91’99… Computer Vision (isotropic & homogeneous textures): Gibson’50, Witkin’81, Garding’92’93, Malik&Rosenholtz’97, Leung&Malik’97… Detection & Recognition (2D & 3D): Morola’89, Forsyth’91, Vetter’94, Mukherjee’95, Zabrodsky’95, Basri & Moses’96, Kanatani’97, Sun’97, Yang, Hong, Ma’02 This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. Reconstruction (from single view): Kanade’81, Fawcett’93, Rothwell’93, Zabrodsky’95’97, van Gool et.al.’96, Carlsson’98, Svedberg and Carlsson’99, Francois and Medioni’02, Huang, Yang, Hong, Ma’02,03 September 15, 2003 ICRA2003, Taipei
6
Multiple-View Reconstruction from Scene Knowledge
SYMMETRY & MULTIPLE-VIEW GEOMETRY Fundamental types of symmetry Equivalent views Symmetry based reconstruction MUTIPLE-VIEW MULTIPLE-OBJECT ALIGNMENT Scale alignment: adjacent objects in a single view Scale alignment: same object in multiple views ALGORITHMS & EXAMPLES Building 3-D geometric models with symmetry Symmetry extraction, detection, and matching Camera calibration This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. SUMMARY: Problems and future work September 15, 2003 ICRA2003, Taipei
7
SYMMETRY & MUTIPLE-VIEW GEOMETRY
Why does an image of a symmetric object give away its structure? Why does an image of a symmetric object give away its pose? What else can we get from an image of a symmetric object? September 15, 2003 ICRA2003, Taipei
8
Equivalent views from rotational symmetry
September 15, 2003 ICRA2003, Taipei
9
Equivalent views from reflectional symmetry
September 15, 2003 ICRA2003, Taipei
10
Equivalent views from translational symmetry
September 15, 2003 ICRA2003, Taipei
11
GEOMETRY FOR SINGLE IMAGES – Symmetric Structure
Definition. A set of 3-D features S is called a symmetric structure if there exists a nontrivial subgroup G of E(3) that acts on it such that for every g in G, the map is an (isometric) automorphism of S. We say the structure S has a group symmetry G. G is isometric; G is discontinuous. Image of a symmetric object. September 15, 2003 ICRA2003, Taipei
12
GEOMETRY FOR SINGLE IMAGES – Multiple “Equivalent” Views
September 15, 2003 ICRA2003, Taipei
13
GEOMETRY FOR SINGLE IMAGES – Symmetric Rank Condition
Solving g0 from Lyapunov equations: with g’i and gi known. September 15, 2003 ICRA2003, Taipei
14
THREE TYPES OF SYMMETRY – Reflective Symmetry
Pr September 15, 2003 ICRA2003, Taipei
15
THREE TYPES OF SYMMETRY – Rotational Symmetry
September 15, 2003 ICRA2003, Taipei
16
THREE TYPES OF SYMMETRY – Translatory Symmetry
September 15, 2003 ICRA2003, Taipei
17
SINGLE-VIEW GEOMETRY WITH SYMMETRY – Ambiguities
“(a+b)-parameter” means there are an a-parameter family of ambiguity in R0 of g0 and a b-parameter family of ambiguity in T0 of g0. P Pr Pr N September 15, 2003 ICRA2003, Taipei
18
Symmetry-based reconstruction (reflection)
Reflectional symmetry 2 (1) 1 (2) 4 (3) 3 (4) Virtual camera-camera 2qThis is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
19
Symmetry-based reconstruction
Epipolar constraint 2 (1) 1 (2) 4 (3) 3 (4) Homography 2qThis is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
20
Symmetry-based reconstruction (algorithm)
2 pairs of symmetric image points Recover essential matrix or homography Decompose or to obtain 2qThis is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. Solve Lyapunov equation to obtain and then . September 15, 2003 ICRA2003, Taipei
21
Symmetry-based reconstruction (reflection)
2qThis is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
22
Symmetry-based reconstruction (rotation)
2qThis is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
23
Symmetry-based reconstruction (translation)
2qThis is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
24
ALIGNMENT OF MULTIPLE SYMMETRIC OBJECTS
? This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
25
Correct scales within a single image
Pick the image of a point on the intersection line This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
26
Correct scale within a single image
This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
27
Correct scales across multiple images
September 15, 2003 ICRA2003, Taipei
28
Correct scales across multiple images
This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
29
Correct scales across multiple images
This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
30
Image alignment after scales corrected
This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
31
1. Specify symmetric objects and correspondence
ALGORITHM: Building 3-D geometric models 1. Specify symmetric objects and correspondence This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
32
2. Recover camera poses and scene structure
Building 3-D geometric models 2. Recover camera poses and scene structure This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
33
3. Obtain 3-D model and rendering with images
Building 3-D geometric models 3. Obtain 3-D model and rendering with images This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
34
Extract, detect, match symmetric objects across
ALGORITHM: Symmetry detection and matching Extract, detect, match symmetric objects across images, and recover the camera poses. September 15, 2003 ICRA2003, Taipei
35
Color-based segmentation (mean shift) 2. Polygon fitting
Segmentation & polygon fitting Color-based segmentation (mean shift) 2. Polygon fitting September 15, 2003 ICRA2003, Taipei
36
3. Symmetry verification (rectangles,…)
Symmetry verification & recovery 3. Symmetry verification (rectangles,…) 4. Single-view recovery September 15, 2003 ICRA2003, Taipei
37
5. Find the only one set of camera poses that
Symmetry-based matching 5. Find the only one set of camera poses that are consistent with all symmetry objects September 15, 2003 ICRA2003, Taipei
38
MATCHING OF SYMMETRY CELLS – Graph Representation
Cell in image 1 Cell in image 2 # of possible matching Camera transformation 1 2 3 The problem of finding the largest set of matching cells is equivalent to the problem of finding the maximal complete subgraphs (cliques) in the matching graph. 36 possible matchings September 15, 2003 ICRA2003, Taipei
39
Camera poses and 3-D recovery
Side view Top view Generic view Length ratio Reconstruction Ground truth Whiteboard 1.506 1.51 Table 1.003 1.00 September 15, 2003 ICRA2003, Taipei
40
Multiple-view matching and recovery (Ambiguities)
September 15, 2003 ICRA2003, Taipei
41
Multiple-view matching and recovery (Ambiguities)
September 15, 2003 ICRA2003, Taipei
42
ALGORITHM: Calibration from symmetry
Calibrated homography Uncalibrated homography (vanishing point) This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
43
ALGORITHM: Calibration from symmetry
Calibration with a rig is also simplified: we only need to know that there are sufficient symmetries, not necessarily the 3-D coordinates of points on the rig. This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
44
SUMMARY: Multiple-View Geometry + Symmetry
Multiple (perspective) images = multiple-view rank condition Single image + symmetry = “multiple-view” rank condition Multiple images + symmetry = rank condition + scale correction Matching + symmetry = rank condition + scale correction + clique identification This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
45
SUMMARY Multiple-view 3-D reconstruction in presence of symmetry
Symmetry based algorithms are accurate, robust, and simple. Methods are baseline independent and object centered. Alignment and matching can and should take place in 3-D space. Camera self-calibration and calibration are simplified and linear. Related applications Using symmetry to overcome occlusion. Reconstruction and rendering with non-symmetric area. Large scale 3-D map building of man-made environments. This is the outline of my talk. Basically we are interested in geometry of multiple images taken for a scene with multiple moving objects, or non-rigid motions, the so-called dynamical scenes. This requires us to generalize existing multiple view geometry developed mostly for static scene to a dynamical scenario. We will first introduce one way to model perspective projection of a scene by embedding its dynamics into a higher dimensional space. This allows us to address conceptual issues such as whether or not a full reconstruction of the scene structure and dynamics is possible, the so-called observability issue from system theoretical viewpoint. As we will see, in a multiple view setting, the observability is not a critical issue, in a sense that in principle it is always possible to fully recover the scene from sufficiently many views, even a rather rich class of dynamics is concerned. Then, like the classic multiple view geometry, what is important now is to identify all the intrinsic constraints, such as the epipolar constraint, among images which will potentially allow us to recover the structure and dynamics. We know that in multiple view geometry for static scene, these constraints boil down to multilinear constraints. However, it is difficult to generalize them to the dynamical setting, because as we will see that many intrinsic constraints that arise in the dynamical setting is NOT going to be linear, even if the scene dynamics themselves are. We therefore propose in this talk a different approach. Our previous work has shown that a more global characterization of constraints among multiple images of a static scene is the so called rank conditions on certain matrix. We will show in this talk that the same principle carries into the context of dynamical scenes, even if different types of geometric primitives are considered. Finally we conclude our talk by pointing out a few open directions and some of our current work on rank related issues. September 15, 2003 ICRA2003, Taipei
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.