Download presentation
Presentation is loading. Please wait.
1
Introduction to Scientific Computing II
Multigrid Miriam Mehl, Michael Bader
2
Multigrid – Algorithm iterate (GS) on the fine grid
restrict residual to the coarse grid solve coarse grid equation for the error interpolate error to the fine grid correct fine grid solution
3
Multigrid – Things to Choose
smoother relation step sizes coarse – fine grid transfer operators restriction interpolation processing order of grid levels
4
Multigrid – Convergence
two grid analysis h-independent convergence for ‚good‘ components
5
Two Grid – Multigrid Example: 2D Poisson 5-point-stencil h
two-grid analysis V-cycle 1/32 0.042 1/64 0.044 1/128 1/256 0.043 1/512 1/1024 1/2048
6
Multigrid – Some Rules smoother optimal smoothing
not(!) optimal convergence small number of smoothing iterations!
7
Multigrid – Some Rules grid coarsening standard: doubling of h
exceptions: anisotropic operators adaptively refined grids unstructured grids/general SLEs
8
Multigrid – Some Rules restriction/interpolation
order of restriction + order of interpolation > order of discretisation
9
Multigrid – Some Rules V-cycle faster W-cycle more robust
10
Multigrid – Parallelisation
parallel smoothing parallel restriction and interpolation parallel stopping criteria
11
Multigrid – Parallel Smoothing
Gauss Seidel Jacobi-like operation!!! processor 1 processor 2
12
Multigrid – Parallel Smoothing
Gauss Seidel processor 1 processor 2
13
Multigrid – Parallel Smoothing
Gauss Seidel processor 1 processor 2
14
Multigrid – Parallel Smoothing
Gauss Seidel Jacobi-like operation!!! processor 1 processor 2
15
Multigrid – Parallel Smoothing
Gauss Seidel different result than sequential GS!!! processor 1 processor 2
16
Multigrid – Parallel Smoothing
Alternatives: Red-Black Gauss-Seidel processor 1 processor 2
17
Multigrid – Parallel Smoothing
Alternatives: Red-Black Gauss-Seidel processor 1 processor 2
18
Multigrid – Parallel Smoothing
Alternatives: Red-Black Gauss-Seidel processor 1 processor 2
19
Multigrid – Parallel Smoothing
Alternatives: Red-Black Gauss-Seidel processor 1 processor 2
20
Multigrid – Parallel Smoothing
Alternatives: Red-Black Gauss-Seidel processor 1 processor 2
21
Multigrid – Parallel Smoothing
Alternatives: Red-Black Gauss-Seidel
22
Multigrid – Parallel Smoothing
Alternatives: damped Jacobi processor 1 processor 2
23
Multigrid – Parallel Smoothing
Alternatives: damped Jacobi processor 1 processor 2
24
Multigrid – Parallel Smoothing
Alternatives: damped Jacobi processor 1 processor 2
25
Multigrid – Parallel Smoothing
red-black GS: robust and fast smoothing further reading: Irad Yavneh, Multigrid smoothing factors for red-black Gauss-Seidel relaxation applied to a class of elliptic operators, SIAM Journal on Numerical Analysis, 32 (4), 1995 Jun Zhang, Acceleration of five-point red-black Gauss-Seidel in multigrid for Poisson equation, Applied Mathematics and Computation, 80(1), 1996 damped Jacobi: good smoothing
26
Ferienakademie, Sarntal, Sep 23 – Oct 5, 2012
Universität Erlangen-Nürnberg Technische Universität München Universität Stuttgart Ferienakademie, Sarntal, Sep 23 – Oct 5, 2012 Course 4: Scales and Scalability as Challenges for CSE (Bader, Schweitzer, Wellein) Deadline: Yesterday
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.