Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction to Scientific Computing II

Similar presentations


Presentation on theme: "Introduction to Scientific Computing II"— Presentation transcript:

1 Introduction to Scientific Computing II
Multigrid Miriam Mehl, Michael Bader

2 Multigrid – Algorithm iterate (GS) on the fine grid
restrict residual to the coarse grid solve coarse grid equation for the error interpolate error to the fine grid correct fine grid solution

3 Multigrid – Things to Choose
smoother relation step sizes coarse – fine grid transfer operators restriction interpolation processing order of grid levels

4 Multigrid – Convergence
two grid analysis h-independent convergence for ‚good‘ components

5 Two Grid – Multigrid Example: 2D Poisson 5-point-stencil h
two-grid analysis V-cycle 1/32 0.042 1/64 0.044 1/128 1/256 0.043 1/512 1/1024 1/2048

6 Multigrid – Some Rules smoother optimal smoothing
not(!) optimal convergence small number of smoothing iterations!

7 Multigrid – Some Rules grid coarsening standard: doubling of h
exceptions: anisotropic operators adaptively refined grids unstructured grids/general SLEs

8 Multigrid – Some Rules restriction/interpolation
order of restriction + order of interpolation > order of discretisation

9 Multigrid – Some Rules V-cycle faster W-cycle more robust

10 Multigrid – Parallelisation
parallel smoothing parallel restriction and interpolation parallel stopping criteria

11 Multigrid – Parallel Smoothing
Gauss Seidel  Jacobi-like operation!!! processor 1 processor 2

12 Multigrid – Parallel Smoothing
Gauss Seidel processor 1 processor 2

13 Multigrid – Parallel Smoothing
Gauss Seidel processor 1 processor 2

14 Multigrid – Parallel Smoothing
Gauss Seidel  Jacobi-like operation!!! processor 1 processor 2

15 Multigrid – Parallel Smoothing
Gauss Seidel  different result than sequential GS!!! processor 1 processor 2

16 Multigrid – Parallel Smoothing
Alternatives: Red-Black Gauss-Seidel processor 1 processor 2

17 Multigrid – Parallel Smoothing
Alternatives: Red-Black Gauss-Seidel processor 1 processor 2

18 Multigrid – Parallel Smoothing
Alternatives: Red-Black Gauss-Seidel processor 1 processor 2

19 Multigrid – Parallel Smoothing
Alternatives: Red-Black Gauss-Seidel processor 1 processor 2

20 Multigrid – Parallel Smoothing
Alternatives: Red-Black Gauss-Seidel processor 1 processor 2

21 Multigrid – Parallel Smoothing
Alternatives: Red-Black Gauss-Seidel

22 Multigrid – Parallel Smoothing
Alternatives: damped Jacobi processor 1 processor 2

23 Multigrid – Parallel Smoothing
Alternatives: damped Jacobi processor 1 processor 2

24 Multigrid – Parallel Smoothing
Alternatives: damped Jacobi processor 1 processor 2

25 Multigrid – Parallel Smoothing
red-black GS: robust and fast smoothing further reading: Irad Yavneh, Multigrid smoothing factors for red-black Gauss-Seidel relaxation applied to a class of elliptic operators, SIAM Journal on Numerical Analysis, 32 (4), 1995 Jun Zhang, Acceleration of five-point red-black Gauss-Seidel in multigrid for Poisson equation, Applied Mathematics and Computation, 80(1), 1996 damped Jacobi: good smoothing

26 Ferienakademie, Sarntal, Sep 23 – Oct 5, 2012
Universität Erlangen-Nürnberg Technische Universität München Universität Stuttgart Ferienakademie, Sarntal, Sep 23 – Oct 5, 2012 Course 4: Scales and Scalability as Challenges for CSE (Bader, Schweitzer, Wellein) Deadline: Yesterday


Download ppt "Introduction to Scientific Computing II"

Similar presentations


Ads by Google