Presentation is loading. Please wait.

Presentation is loading. Please wait.

Equations & Inequalities.

Similar presentations


Presentation on theme: "Equations & Inequalities."— Presentation transcript:

1 Equations & Inequalities

2 𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑳𝒊𝒏𝒆𝒂𝒓 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔
& 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒊𝒆𝒔

3 𝑰𝒔𝒐𝒍𝒂𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆

4 Equations & Inequalities
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑸𝒖𝒂𝒅𝒓𝒂𝒕𝒊𝒄 Equations & Inequalities

5 Isolate Zero

6 Equations & Inequalities
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑷𝒐𝒍𝒚𝒏𝒐𝒎𝒂𝒊𝒍 Equations & Inequalities

7 Isolate Zero

8 Equations & Inequalities
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑹𝒂𝒕𝒊𝒐𝒏𝒂𝒍 Equations & Inequalities

9 Multiply by the LCD

10 Equations & Inequalities
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑽𝒂𝒍𝒖𝒆 Equations & Inequalities

11 Isolate the absolute value

12 𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑽𝒂𝒍𝒖𝒆
Equations 𝒂 =

13 a, if a > 0 -a, if a < 0

14 𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑽𝒂𝒍𝒖𝒆
Inequalities 𝒇(𝒙) > c means….

15 f(x) > c OR f(x)< -c

16 𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑬𝒙𝒑𝒐𝒏𝒆𝒏𝒕𝒊𝒂𝒍 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔

17 Isolate the power

18 𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑹𝒂𝒅𝒊𝒄𝒂𝒍 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔

19 Isolate the radical

20 𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑳𝒐𝒈𝒂𝒓𝒊𝒕𝒉𝒎𝒊𝒄 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔

21 Write as the log of one expression and then isolate the log

22 𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑻𝒓𝒊𝒈 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔 (3)

23 Use zero product property
Isolate the trig ratio Use zero product property Use a trig identity

24 Properties of Functions

25 𝑻𝒐 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆 𝒂 𝒈𝒓𝒂𝒑𝒉 𝒖𝒑…

26 …𝒂𝒅𝒅 𝒂 𝒏𝒖𝒎𝒃𝒆𝒓

27 𝑻𝒐 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆 𝒂 𝒈𝒓𝒂𝒑𝒉 𝒅𝒐𝒘𝒏…

28 …𝒔𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝒂 𝒏𝒖𝒎𝒃𝒆𝒓

29 𝑻𝒐 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆 𝒂 𝒈𝒓𝒂𝒑𝒉 𝒓𝒊𝒈𝒉𝒕…

30 …𝒔𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝒂 𝒏𝒖𝒎𝒃𝒆𝒓 "𝒘𝒊𝒕𝒉𝒊𝒏"

31 𝑻𝒐 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆 𝒂 𝒈𝒓𝒂𝒑𝒉 𝒍𝒆𝒇𝒕…

32 …𝒂𝒅𝒅 𝒂 𝒏𝒖𝒎𝒃𝒆𝒓

33 𝑻𝒐 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝒔𝒕𝒓𝒆𝒕𝒄𝒉 𝒂 𝒈𝒓𝒂𝒑𝒉

34 …𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒚 𝒃𝒚 𝒂 𝒏𝒖𝒎𝒃𝒆𝒓 c (c>1)

35 𝑻𝒐 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝒔𝒉𝒓𝒊𝒏𝒌 𝒂 𝒈𝒓𝒂𝒑𝒉

36 …𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒚 𝒃𝒚 𝒂 𝒏𝒖𝒎𝒃𝒆𝒓 c (0<c<1)

37 𝒇 𝒙 +𝒌

38 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆𝒔 𝒈𝒓𝒂𝒑𝒉 𝒖𝒑 𝒌 𝒖𝒏𝒊𝒕𝒔

39 𝒇 𝒙 −𝒌

40 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆𝒔 𝒈𝒓𝒂𝒑𝒉 𝒅𝒐𝒘𝒏 𝒌 𝒖𝒏𝒊𝒕𝒔

41 𝒌∗𝒇 𝒙 , 𝒘𝒉𝒆𝒓𝒆 𝒌>𝟏

42 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒔𝒕𝒓𝒆𝒕𝒄𝒉

43 𝒌∗𝒇 𝒙 , 𝒘𝒉𝒆𝒓𝒆 𝟎<𝒌<𝟏

44 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒔𝒉𝒓𝒊𝒏𝒌

45 𝒇 𝒙+𝒉

46 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆𝒔 𝒈𝒓𝒂𝒑𝒉 𝒍𝒆𝒇𝒕 𝒉 𝒖𝒏𝒊𝒕𝒔

47 𝒇 𝒙−𝒉

48 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆𝒔 𝒈𝒓𝒂𝒑𝒉 𝒓𝒊𝒈𝒉𝒕 𝒉 𝒖𝒏𝒊𝒕𝒔

49 𝑻𝒐 𝒇𝒊𝒏𝒅 𝒙−𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕𝒔

50 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝟎 𝒇𝒐𝒓 𝒚

51 𝑻𝒐 𝒇𝒊𝒏𝒅 𝒚−𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕

52 𝑺𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝟎 𝒇𝒐𝒓 𝒙

53 𝑯𝒐𝒘 𝒕𝒐 𝒇𝒊𝒏𝒅 𝒊𝒏𝒗𝒆𝒓𝒔𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
(𝟒 𝒔𝒕𝒆𝒑𝒔)

54 𝟏) 𝑹𝒆𝒑𝒍𝒂𝒄𝒆 𝒇 𝒙 𝒘𝒊𝒕𝒉 𝒚 𝟐) 𝑺𝒘𝒊𝒕𝒄𝒉 𝒙 & 𝒚 𝟑) 𝑺𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒏𝒆𝒘 𝒚 𝟒) 𝑹𝒆𝒑𝒍𝒂𝒄𝒆 𝒈 𝒙 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒏𝒆𝒘 𝒚

55 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 𝒐𝒇 𝒊𝒏𝒗𝒆𝒓𝒔𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

56 𝟏) 𝑺𝒚𝒎𝒎𝒆𝒕𝒓𝒊𝒄 𝒘𝒊𝒕𝒉 𝒚=𝒙 𝟐) 𝒇 𝒈 𝒙 =𝒈 𝒇 𝒙 =𝒙 𝟑) 𝒐𝒏𝒆−𝒕𝒐−𝒐𝒏𝒆 𝟒) 𝑫𝒐𝒎𝒂𝒊𝒏 & 𝑹𝒂𝒏𝒈𝒆 𝒂𝒓𝒆 𝒊𝒏𝒕𝒆𝒓𝒄𝒉𝒂𝒏𝒈𝒆𝒅

57 𝒇 𝒌𝒙 , 𝒘𝒉𝒆𝒓𝒆 𝒌>𝟏

58 𝑯𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝒔𝒉𝒓𝒊𝒏𝒌

59 𝒇 𝒌𝒙 , 𝒘𝒉𝒆𝒓𝒆 𝟎<𝒌<𝟏

60 𝑯𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝒔𝒕𝒓𝒆𝒕𝒄𝒉

61 𝒇 −𝒙

62 𝑹𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒂𝒄𝒓𝒐𝒔𝒔 𝒕𝒉𝒆 𝒚−𝒂𝒙𝒊𝒔

63 −𝒇 𝒙

64 𝑹𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒂𝒄𝒓𝒐𝒔𝒔 𝒙−𝒂𝒙𝒊𝒔

65 −𝒇 −𝒙

66 𝑹𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒐𝒓𝒊𝒈𝒊𝒏

67 𝒇 𝒙

68 𝑹𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝑸𝑰 𝒂𝒏𝒅 𝑸𝑰𝑽
𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒚−𝒂𝒙𝒊𝒔 (𝒍𝒐𝒔𝒆 𝑸𝑰𝑰 & 𝑸𝑰𝑰𝑰)

69 𝒇(𝒙)

70 𝑹𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝑸𝑰𝑰𝑰 𝒂𝒏𝒅 𝑸𝑰𝑽
𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒙−𝒂𝒙𝒊𝒔 (𝒍𝒐𝒔𝒆 𝑸𝑰 & 𝑸𝑰𝑰)

71 𝟏 𝒇 𝒙

72 𝒚→ 𝟎 + ↔ 𝒚→+∞ 𝒚→ 𝟎 − ↔ 𝒚→−∞\ 𝒚=𝟎↔ 𝒚 𝒊𝒔 𝒖𝒏𝒅𝒆𝒇𝒊𝒏𝒆𝒅

73 𝒇 𝒉−𝒙

74 =𝒇 𝒙+𝒉 𝒕𝒉𝒆𝒏 𝒓𝒆𝒑𝒍𝒂𝒄𝒆 𝒙 𝒃𝒚 −𝒙 (𝐫𝐞𝐟𝐥𝐞𝐜𝐭𝐢𝐧 𝐨𝐟 𝐟 𝐱+𝐡 𝐭𝐡𝐫𝐨𝐮𝐠𝐡 𝐲−𝐚𝐱𝐢𝐬)

75 𝒇(𝒙) 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒂𝒔 𝒂 𝒑𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

76 𝒇 𝒙 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝒘𝒉𝒆𝒓𝒆 𝒇 𝒙 ≥𝟎 −𝒇 𝒙 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝒘𝒉𝒆𝒓𝒆 𝒇 𝒙 <𝟎

77 𝒆𝒗𝒆𝒏 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

78 𝒂 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒕𝒉𝒂𝒕 𝒊𝒔 𝒔𝒚𝒎𝒎𝒆𝒕𝒓𝒊𝒄 𝒕𝒐 𝒊𝒕𝒔𝒆𝒍𝒇 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒕𝒉𝒆 𝒚−𝒂𝒙𝒊𝒔 𝒇 −𝒙 =𝒇(𝒙)
𝒕𝒐 𝒊𝒕𝒔𝒆𝒍𝒇 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒕𝒉𝒆 𝒚−𝒂𝒙𝒊𝒔 𝒇 −𝒙 =𝒇(𝒙)

79 𝒐𝒅𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

80 𝒂 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒕𝒉𝒂𝒕 𝒊𝒔 𝒔𝒚𝒎𝒎𝒆𝒕𝒓𝒊𝒄 𝒕𝒐 𝒊𝒕𝒔𝒆𝒍𝒇 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒕𝒉𝒆 𝒐𝒓𝒊𝒈𝒊𝒏
−𝒇 −𝒙 =𝒇(𝒙)

81 Algebraic Functions

82 𝒇 𝒙 =𝒙

83 𝑳𝒊𝒏𝒆𝒂𝒓 𝑭𝒂𝒎𝒊𝒍𝒚

84 𝒇 𝒙 = 𝒙 𝟐 , 𝒙 𝟒 , 𝒙 𝟔 …

85 𝑷𝒂𝒓𝒂𝒃𝒐𝒍𝒊𝒄 𝑭𝒂𝒎𝒊𝒍𝒚

86 𝒇 𝒙 = 𝒙 𝟑 , 𝒙 𝟓 , 𝒙 𝟕 …

87 𝑪𝒖𝒃𝒊𝒄 𝑭𝒂𝒎𝒊𝒍𝒚

88 𝒇 𝒙 = 𝒙 𝟏 𝟐 , 𝒙 𝟏 𝟒 , 𝒙 𝟏 𝟔 …

89 𝑺𝒒𝒖𝒂𝒓𝒆 𝑹𝒐𝒐𝒕 𝑭𝒂𝒎𝒊𝒍𝒚

90 𝒇 𝒙 = 𝒙 𝟏 𝟑 , 𝒙 𝟏 𝟓 , 𝒙 𝟏 𝟕 …

91 𝑪𝒖𝒃𝒊𝒄 𝑹𝒐𝒐𝒕 𝑭𝒂𝒎𝒊𝒍𝒚

92 𝒇 𝒙 = 𝒙 −𝟏 , 𝒙 −𝟑 , 𝒙 −𝟓 …

93 𝑹𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏

94 𝒇 𝒙 = 𝒙 −𝟐 , 𝒙 −𝟒 , 𝒙 −𝟔 …

95 𝑩𝒆𝒍𝒍 𝑪𝒖𝒓𝒗𝒆 𝑭𝒂𝒎𝒊𝒍𝒚

96 𝒇 𝒙 = 𝒙 𝟐 𝟑 , 𝒙 𝟒 𝟓 , 𝒙 𝟔 𝟕 …

97 𝑩𝒊𝒓𝒅 𝑭𝒂𝒎𝒊𝒍𝒚

98 𝒇 𝒙 = 𝒙

99 𝑮𝒓𝒆𝒂𝒕𝒆𝒔𝒕 𝒊𝒏𝒕𝒆𝒈𝒆𝒓 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

100 𝒇 𝒙 = 𝒙

101 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑽𝒂𝒍𝒖𝒆

102 𝒇 𝒙 =𝒂 𝒙 𝟐 +𝒃𝒙+𝒄

103 𝑷𝒂𝒓𝒂𝒃𝒐𝒍𝒂 𝑭𝒂𝒎𝒊𝒍𝒚

104 𝒇 𝒙 =𝒂 𝒙 𝟐 +𝒃𝒙+𝒄 𝑽𝒆𝒓𝒕𝒆𝒙?

105 𝑽𝒆𝒓𝒕𝒆𝒙 → 𝒉, 𝒌 𝒉= −𝒃 𝟐𝒂 𝒌=𝒇( −𝒃 𝟐𝒂 )

106 𝒇 𝒙 = 𝒂 𝒏 𝒙 𝒏 + 𝒂 𝒏−𝟏 𝒙 𝒏−𝟏 +…+ 𝒂 𝟎 𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏

107 𝟏) 𝒆𝒏𝒅 𝒃𝒆𝒉𝒂𝒗𝒊𝒐𝒓→𝒑𝒂𝒓𝒂𝒃𝒐𝒍𝒊𝒄
𝟐) 𝐢𝐧𝐭𝐞𝐫𝐜𝐞𝐩𝐭𝐬 𝟑) 𝐫𝐞𝐥𝐚𝐭𝐢𝐯𝐞 𝐞𝐱𝐭𝐫𝐞𝐦𝐚 𝐧−𝟏 𝟒)𝐬𝐲𝐦𝐦𝐞𝐭𝐫𝐲

108 𝒇 𝒙 = 𝒂 𝒏 𝒙 𝒏 + 𝒂 𝒏−𝟏 𝒙 𝒏−𝟏 +…+ 𝒂 𝟎 𝒏 𝒊𝒔 𝒐𝒅𝒅

109 𝟏) 𝒐𝒖𝒕𝒔𝒊𝒅𝒆 𝒃𝒆𝒉𝒂𝒗𝒊𝒐𝒓→𝒄𝒖𝒃𝒊𝒄
𝟐) 𝐢𝐧𝐭𝐞𝐫𝐜𝐞𝐩𝐭𝐬 𝟑) 𝐫𝐞𝐥𝐚𝐭𝐢𝐯𝐞 𝐞𝐱𝐭𝐫𝐞𝐦𝐚 𝐧−𝟏 𝟒)𝐬𝐲𝐦𝐦𝐞𝐭𝐫𝐲

110 𝒇 𝒙 = 𝒂 𝒏 𝒙 𝒏 + 𝒂 𝒏−𝟏 𝒙 𝒏−𝟏 +…+ 𝒂 𝟎 𝒃 𝒎 𝒙 𝒎 + 𝒃 𝒎−𝟏 𝒙 𝒎−𝟏 +…+ 𝒃 𝟎

111 𝟏) 𝒂𝒔𝒚𝒎𝒑𝒕𝒐𝒕𝒆𝒔 𝟐) 𝐢𝐧𝐭𝐞𝐫𝐜𝐞𝐩𝐭𝐬 𝟑) 𝐬𝐲𝐦𝐦𝐞𝐭𝐫𝐲 𝟒) 𝐩𝐥𝐨𝐭 𝐩𝐨𝐢𝐧𝐭𝐬, 𝐢𝐟 𝐧𝐞𝐞𝐝𝐞𝐝

112 𝑻𝒐 𝒇𝒊𝒏𝒅 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒂𝒔𝒚𝒎𝒑𝒕𝒐𝒕𝒆𝒔…

113 𝑺𝒆𝒕 𝒅𝒆𝒏𝒐𝒎𝒊𝒏𝒂𝒕𝒐𝒓 𝒐𝒇 𝒔𝒊𝒎𝒑𝒍𝒊𝒇𝒊𝒆𝒅 𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒆𝒙𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏 𝒆𝒒𝒖𝒂𝒍 𝒕𝒐 𝟎

114 𝑻𝒐 𝒇𝒊𝒏𝒅 𝒉𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝒂𝒔𝒚𝒎𝒑𝒕𝒐𝒕𝒆𝒔
𝒐𝒇 𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒔…

115 𝒏=𝒎, 𝒉𝒐𝒓𝒊𝒛. 𝒚= 𝒂 𝒃 𝒏<𝒎, 𝒉𝒐𝒓𝒊𝒛. 𝒚=𝟎 𝒏>𝒎, 𝒏𝒐 𝒉𝒐𝒓𝒊𝒛. 𝒂𝒔𝒚𝒎

116 𝒇 𝒙 = 𝒄− 𝒙 𝟐 , 𝒄>𝟎

117 𝑪𝒊𝒓𝒄𝒖𝒍𝒂𝒓 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

118 𝒇 𝒙 = 𝒙 𝟐 −𝒄 , 𝒄>𝟎

119 𝑯𝒚𝒑𝒆𝒓𝒃𝒐𝒍𝒊𝒄 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

120 𝒇 𝒙 = 𝒙 𝟐 +𝒄

121 𝑯𝒚𝒑𝒆𝒓𝒃𝒐𝒍𝒊𝒄 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

122 Trigonometric Functions

123 𝑳𝒂𝒘 𝒐𝒇 𝑺𝒊𝒏𝒆𝒔

124 𝒂 𝒔𝒊𝒏 𝑨 = 𝒃 𝒔𝒊𝒏 𝑩 = 𝒄 𝒔𝒊𝒏 𝑪

125 𝑳𝒂𝒘 𝒐𝒇 𝑪𝒐𝒔𝒊𝒏𝒆𝒔

126 𝒂 𝟐 = 𝒃 𝟐 + 𝒄 𝟐 −𝟐𝒃𝒄∙𝑪𝒐𝒔𝑨 𝒃 𝟐 = 𝒂 𝟐 + 𝒄 𝟐 −𝟐𝒂𝒄∙𝑪𝒐𝒔𝑨 𝒄 𝟐 = 𝒂 𝟐 + 𝒃 𝟐 −𝟐𝒂𝒃∙𝑪𝒐𝒔𝑨

127 𝑳𝒂𝒘 𝒐𝒇 𝑺𝒊𝒏𝒆𝒔 𝒊𝒔 𝒖𝒔𝒆𝒅 𝒇𝒐𝒓…

128 𝑨𝑨𝑺, 𝑨𝑺𝑨, 𝑺𝑺𝑨

129 𝑳𝒂𝒘 𝒐𝒇 𝑪𝒐𝒔𝒊𝒏𝒆𝒔 𝒊𝒔 𝒖𝒔𝒆𝒅 𝒇𝒐𝒓…

130 𝑺𝑺𝑺, 𝑺𝑨𝑺

131 𝑨𝒓𝒆𝒂 𝒐𝒇 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 (SAS)

132 𝑨= 𝟏 𝟐 𝒂𝒃∙𝑺𝒊𝒏𝑪 𝑨= 𝟏 𝟐 𝒃𝒄∙𝑺𝒊𝒏𝑨 𝑨= 𝟏 𝟐 𝒂𝒄∙𝑺𝒊𝒏𝑩

133 𝑨𝒓𝒆𝒂 𝒐𝒇 𝒂 𝑪𝒊𝒓𝒄𝒍𝒆 𝑺𝒆𝒄𝒕𝒐𝒓

134 𝑨= 𝟏 𝟐 𝒓 𝟐 𝜽

135 𝑨𝒓𝒄 𝑳𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒂 𝒄𝒊𝒓𝒄𝒍𝒆

136 𝑺=𝒓𝜽

137 Signs of Trig Ratios

138 All Students Take Calculus

139 𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒔𝒊𝒏 𝒙

140

141 𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒄𝒐𝒔 𝒙

142

143 𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒕𝒂𝒏 𝒙

144

145 𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒄𝒔𝒄 𝒙

146

147 𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒔𝒆𝒄 𝒙

148

149 𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒄𝒐𝒕 𝒙

150

151 𝑷𝒆𝒓𝒊𝒐𝒅 𝒐𝒇 𝒔𝒊𝒏 𝒙, 𝒄𝒐𝒔 𝒙, 𝒔𝒆𝒄 𝒙 & 𝒄𝒔𝒄 𝒙

152 𝟐𝝅

153 𝑷𝒆𝒓𝒊𝒐𝒅 𝒐𝒇 𝒕𝒂𝒏 𝒙 & 𝒄𝒐𝒕 𝒙

154 𝝅

155 𝑨𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆 𝒐𝒇 𝑻𝒓𝒊𝒈 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒔

156 𝒔𝒊𝒏 𝒙 →𝟏 𝒄𝒐𝒔 𝒙→𝟏 𝒕𝒂𝒏 𝒙 →𝑵𝒐𝒏𝒆 𝒐𝒓 𝑵𝑨 𝒄𝒔𝒄 𝒙→𝟏 𝒔𝒆𝒄 𝒙→𝟏 𝒄𝒐𝒕 𝒙→𝑵𝒐𝒏𝒆 𝒐𝒓 𝑵𝑨

157 𝒇 𝒙 =𝒂∙𝒔𝒊𝒏 𝒃 𝒙−𝒄 +𝒅

158 𝒂=𝒂𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆 𝒃→ 𝟐𝝅 𝒃 𝒐𝒓 𝝅 𝒃 𝒊𝒔 𝒑𝒆𝒓𝒊𝒐𝒅 𝒄=𝑷𝒉𝒂𝒔𝒆 𝒔𝒉𝒊𝒇𝒕 (𝑯𝒐𝒓𝒊𝒛) 𝒅=𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝑺𝒉𝒊𝒇𝒕

159 𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒙 ∙𝒔𝒊𝒏 𝒙

160

161 𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒆 𝒙 ∙𝒔𝒊𝒏 𝒙

162

163 𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒙∙𝒔𝒊𝒏 𝒙

164

165 𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝟏+𝒔𝒊𝒏 𝒙

166

167 𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒙+𝒔𝒊𝒏 𝒙

168

169 𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒙 +𝒔𝒊𝒏 𝒙

170

171 𝑭𝒖𝒏𝒅𝒂𝒎𝒆𝒏𝒕𝒂𝒍 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔

172 𝒕𝒂𝒏 𝒙= 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒄𝒐𝒕 𝒙= 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒙

173 𝑷𝒚𝒕𝒉𝒂𝒈𝒐𝒓𝒆𝒂𝒏 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔

174 𝒔𝒊𝒏 𝟐 𝒙+ 𝒄𝒐𝒔 𝟐 𝒙=𝟏 𝟏+ 𝒄𝒐𝒕 𝟐 𝒙= 𝒄𝒔𝒄 𝟐 𝒙 𝒕𝒂𝒏 𝟐 𝒙+𝟏= 𝒔𝒆𝒄 𝟐 𝒙

175 𝒔𝒊𝒏 𝟐 𝒙+ 𝒄𝒐𝒔 𝟐 𝒙=𝟏 𝑻𝒘𝒐 𝒐𝒕𝒉𝒆𝒓 𝒇𝒐𝒓𝒎𝒔

176 𝟏− 𝒔𝒊𝒏 𝟐 𝒙= 𝒄𝒐𝒔 𝟐 𝒙 𝟏− 𝒄𝒐𝒔 𝟐 𝒙= 𝒔𝒊𝒏 𝟐 𝒙

177 𝑹𝒆𝒄𝒊𝒑𝒓𝒐𝒄𝒂𝒍 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔

178 𝒄𝒔𝒄 𝒙= 𝟏 𝒔𝒊𝒏 𝒙 𝒔𝒆𝒄 𝒙= 𝟏 𝒄𝒐𝒔 𝒙 𝒄𝒐𝒕 𝒙= 𝟏 𝒕𝒂𝒏 𝒙

179 𝑪𝒐𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔

180 𝒔𝒊𝒏 ( 𝟏 𝟐 𝝅−𝒙)=𝒄𝒐𝒔 𝒙 𝒄𝒐𝒔 ( 𝟏 𝟐 𝝅−𝒙)=𝒔𝒊𝒏 𝒙 𝒕𝒂𝒏 ( 𝟏 𝟐 𝝅−𝒙)=𝒄𝒐𝒕 𝒙

181 𝑷𝒐𝒘𝒆𝒓 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔

182 𝒔𝒊𝒏 𝟐 𝒙= 𝟏−𝒄𝒐𝒔 𝟐𝒙 𝟐 𝒄𝒐𝒔 𝟐 𝒙= 𝟏+𝒄𝒐𝒔 𝟐𝒙 𝟐

183 𝑫𝒐𝒖𝒃𝒍𝒆 𝑨𝒏𝒈𝒍𝒆 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔

184 𝒔𝒊𝒏 𝟐𝒙=𝟐 𝒔𝒊𝒏𝒙 𝒄𝒐𝒔𝒙 𝒄𝒐𝒔 𝟐𝒙= 𝒔𝒊𝒏 𝟐 𝒙− 𝒄𝒐𝒔 𝟐 𝒙

185 𝑺𝒖𝒎 & 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔

186 𝒔𝒊𝒏 𝒙+𝒚 = 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒚+𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒚 𝒔𝒊𝒏 𝒙−𝒚 = 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒚−𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒚
𝒔𝒊𝒏 𝒙+𝒚 = 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒚+𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒚 𝒔𝒊𝒏 𝒙−𝒚 = 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒚−𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒚 𝒄𝒐𝒔 𝒙+𝒚 = 𝒄𝒐𝒔 𝒙 𝒄𝒐𝒔 𝒚−𝒔𝒊𝒏 𝒙 𝒔𝒊𝒏 𝒚 𝒄𝒐𝒔 𝒙−𝒚 = 𝒄𝒐𝒔 𝒙 𝒄𝒐𝒔 𝒚+𝒔𝒊𝒏 𝒙 𝒔𝒊𝒏 𝒚

187 Conics

188 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑭𝒐𝒓𝒎 𝒐𝒇 𝒂 𝑪𝒐𝒏𝒊𝒄

189 𝑨 𝒙 𝟐 +𝑩 𝒚 𝟐 +𝑪𝒙+𝑫𝒚+𝑬+𝟎 A & B cannot both = 0

190 𝑷𝑨𝑹𝑨𝑩𝑶𝑳𝑨 𝐲=𝐚 𝒙−𝒉 𝟐 +𝒌 Focus = ??? Directrix = ???

191 Directrix---> 𝐲=𝐤− 𝟏 𝟒𝒂
Focus---> 𝒉, 𝒌+ 𝟏 𝟒𝒂 Directrix---> 𝐲=𝐤− 𝟏 𝟒𝒂

192 𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 𝒇𝒐𝒓𝒎 𝒐𝒇 𝒂 𝒄𝒊𝒓𝒄𝒍𝒆

193 (𝒙−𝒉) 𝟐 𝒂 𝟐 + (𝒚−𝒌) 𝟐 𝒃 𝟐 =𝟏 when a = b OR (𝒙−𝒉) 𝟐 + (𝒚−𝒌) 𝟐 = 𝒓 𝟐

194 𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 𝒇𝒐𝒓𝒎 𝒐𝒇 𝒂 𝒆𝒍𝒍𝒊𝒑𝒔𝒆

195 (𝒙−𝒉) 𝟐 𝒂 𝟐 + (𝒚−𝒌) 𝟐 𝒃 𝟐 =𝟏 (𝒙−𝒉) 𝟐 𝒃 𝟐 + (𝒚−𝒌) 𝟐 𝒂 𝟐 =𝟏 where a > b

196 𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 𝒇𝒐𝒓𝒎 𝒐𝒇 𝒂 𝒉𝒚𝒑𝒆𝒓𝒃𝒐𝒍𝒂

197 (𝒙−𝒉) 𝟐 𝒂 𝟐 − (𝒚−𝒌) 𝟐 𝒃 𝟐 =𝟏 (𝒚−𝒌) 𝟐 𝒂 𝟐 − (𝒙−𝒉) 𝟐 𝒃 𝟐 =𝟏

198 𝑰𝒏 𝒂 𝑪𝒐𝒏𝒊𝒄 𝒔𝒆𝒄𝒕𝒊𝒐𝒏, 𝒄= ?

199 𝑻𝒉𝒆 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒇𝒓𝒐𝒎 𝒕𝒉𝒆 𝒄𝒆𝒏𝒕𝒆𝒓
𝒕𝒐 𝒕𝒉𝒆 𝒇𝒐𝒄𝒖𝒔/𝒇𝒐𝒄𝒊

200 To find the foci…

201 𝑬𝑳𝑳𝑰𝑷𝑺𝑬 𝒄 𝟐 = 𝒂 𝟐 − 𝒃 𝟐 𝑯𝒀𝑷𝑬𝑹𝑩𝑶𝑳𝑨 𝒄 𝟐 = 𝒂 𝟐 + 𝒃 𝟐

202 To find the asymptotes for a hyperbola…

203 (𝒚−𝒌)=± 𝒃 𝒂 (𝒙−𝒉)

204 (𝒙−𝒉) 𝟐 𝒂 𝟐 + (𝒚−𝒌) 𝟐 𝒃 𝟐 =𝟎 Is the graph of….

205 Point (h, k)

206 (𝒙−𝒉) 𝟐 𝒂 𝟐 + (𝒚−𝒌) 𝟐 𝒃 𝟐 =−𝑪 Is the graph of….

207 The empty set

208 (𝒙−𝒉) 𝟐 𝒂 𝟐 − (𝒚−𝒌) 𝟐 𝒃 𝟐 =𝟎 Is the graph of….

209 Two lines (asymptotes)

210 (𝒙−𝒉) 𝟐 𝒂 𝟐 − 𝒚−𝒌 𝟐 𝒃 𝟐 =−𝑪 Is the graph of….

211 A hyperbola (still!!!)

212 Logarithmic & Exponential Functions

213 𝒂 𝒙 X is a positive integer

214 =𝒂∗𝒂∗𝒂…. (𝒙 𝒕𝒊𝒎𝒆𝒔)

215 𝒂 −𝒙 X is a positive integer

216 𝟏 𝒂 𝒙

217 𝒂 𝒙 ∗ 𝒂 𝒚

218 𝒂 𝒙+𝒚

219 𝒂 𝒙 𝒂 𝒚

220 𝒂 𝒙−𝒚

221 ( 𝒂 𝒙 ) 𝒚

222 𝒂 𝒙𝒚

223 𝒂 𝟎

224 𝟏

225 𝒂 𝒙 𝒚

226 X is the power, y is the root

227 Radical form for… 𝒂 𝒎 𝒏

228 𝒏 𝒂 𝒎 or ( 𝒏 𝒂 ) 𝒎

229 𝒏 𝒙 𝒏 , where n is even

230 𝒙

231 e = (2 diff expressions)

232 𝟏+ 𝟏 𝒙 𝒙 as 𝒙→∞ or 𝟏+𝒙 𝟏 𝒙 as 𝒙→𝟎

233 e is approximately…

234 2.718…

235 𝒇 𝒙 = 𝒃 𝒙 , 𝒃>𝟏

236

237 𝒇 𝒙 = 𝒃 𝒙 , 𝟎<𝒃<𝟏

238

239 𝒇 𝒙 = 𝒆 𝒙

240

241 𝒍𝒐𝒈 𝒂 (𝒙𝒚)

242 𝒍𝒐𝒈 𝒂 𝒙 + 𝒍𝒐𝒈 𝒂 (𝒚)

243 𝒍𝒐𝒈 𝒂 𝒙 𝒚

244 𝒍𝒐𝒈 𝒂 𝒙 − 𝒍𝒐𝒈 𝒂 (𝒚)

245 𝒍𝒐𝒈 𝒂 𝒙 𝒚

246 𝒚∗ 𝒍𝒐𝒈 𝒂 𝒙

247 Change of Base Formula 𝒍𝒐𝒈 𝒃 𝒂

248 𝒍𝒐𝒈 𝒂 𝒍𝒐𝒈 𝒃 = 𝒍𝒏 𝒂 𝒍𝒏 𝒃

249 𝒍𝒏(𝟏)

250 𝟎

251 𝒍𝒏(𝒆)

252 𝟏

253 𝒇 𝒙 = 𝒍𝒐𝒈 𝒃 (𝒙), 𝒃>𝟏

254

255 𝒇 𝒙 = 𝒍𝒐𝒈 𝒃 𝒙 , 𝟎<𝒃<𝟏

256

257 𝒇 𝒙 =𝒍𝒏 𝒙

258

259 𝑰𝒏𝒗𝒆𝒔𝒕𝒎𝒆𝒏𝒕 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 Simple interest A=

260 r = interest rate (decimal)
𝑨=𝑷 𝟏+𝒓𝒕 P=principle r = interest rate (decimal) t = # of years

261 𝑰𝒏𝒗𝒆𝒔𝒕𝒎𝒆𝒏𝒕 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 Compound interest A=

262 r = interest rate (decimal)
𝑨=𝑷 𝟏+ 𝒓 𝒏 𝒏𝒕 P=principle r = interest rate (decimal) t = # of years

263 𝑰𝒏𝒗𝒆𝒔𝒕𝒎𝒆𝒏𝒕 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 Continuous interest A=

264 r = interest rate (decimal)
𝑨=𝑷 𝒆 𝒓𝒕 P=principle r = interest rate (decimal) t = # of years

265 𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝑮𝒓𝒐𝒘𝒕𝒉 y =

266 𝐲=𝑩 𝒆 𝒌𝒕 , 𝒌>𝟎

267 𝑹𝒂𝒅𝒊𝒐𝒂𝒄𝒕𝒊𝒗𝒆 𝑫𝒆𝒄𝒂𝒚 y =

268 𝐲=𝑩 𝒆 𝒌𝒕 , 𝒌<𝟎

269 𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝑮𝒓𝒐𝒘𝒕𝒉 Model

270

271 𝑹𝒂𝒅𝒊𝒐𝒂𝒄𝒕𝒊𝒗𝒆 𝑫𝒆𝒄𝒂𝒚 Model

272

273 𝑩𝒐𝒖𝒏𝒅𝒆𝒅 𝑮𝒓𝒐𝒘𝒕𝒉 y =

274 𝐲=𝑨−𝑩 𝒆 −𝒌𝒕 , 𝒕≥𝟎

275 𝑳𝒐𝒈𝒊𝒔𝒕𝒊𝒄 𝑮𝒓𝒐𝒘𝒕𝒉 y =

276 𝐲= 𝑨 𝟏+𝑩 𝒆 −𝑨𝒌𝒕 𝒕≥𝟎

277 𝑩𝒐𝒖𝒏𝒅𝒆𝒅 𝑮𝒓𝒐𝒘𝒕𝒉 Graph

278 A A-B

279 𝑳𝒐𝒈𝒊𝒔𝒕𝒊𝒄 𝑮𝒓𝒐𝒘𝒕𝒉 Graph

280 A A/(1+B)

281 Sequence & Series

282 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆

283 𝒂 𝒔𝒆𝒕 𝒐𝒇 𝒏𝒖𝒎𝒃𝒆𝒓𝒔 𝒕𝒉𝒂𝒕 𝒔𝒉𝒂𝒓𝒆
𝒂 𝒄𝒐𝒎𝒎𝒐𝒏 𝒑𝒓𝒐𝒑𝒆𝒓𝒕𝒚 𝒂𝒏𝒅 𝒘𝒉𝒐𝒔𝒆 𝒅𝒐𝒎𝒂𝒊𝒏 𝒊𝒔 𝒕𝒉𝒆 𝒔𝒆𝒕 𝒐𝒇 𝒂𝒍𝒍 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒊𝒏𝒕𝒆𝒈𝒆𝒓𝒔

284 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒕 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆

285 𝒂 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒕𝒉𝒂𝒕 𝒉𝒂𝒔 𝒂 𝒍𝒊𝒎𝒊𝒕
𝐚𝐬 𝐧→∞

286 𝒅𝒊𝒗𝒆𝒓𝒈𝒆𝒏𝒕 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆

287 𝒂 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒕𝒉𝒂𝒕 𝐢𝐬 𝐧𝐨𝐭 𝐜𝐨𝐧𝐯𝐞𝐫𝐠𝐞𝐧𝐭

288 𝑮𝒆𝒏𝒆𝒓𝒂𝒍 𝑨𝒓𝒊𝒕𝒉𝒎𝒆𝒕𝒊𝒄 𝒔𝒆𝒓𝒊𝒆𝒔

289 𝒂 𝟏 + 𝒂 𝟏 +𝒅 +…+ ( 𝒂 𝟏 + 𝒏−𝟏 𝒅)

290 𝑺𝒖𝒎 𝒐𝒇 𝒂𝒏 𝑨𝒓𝒊𝒕𝒉𝒎𝒆𝒕𝒊𝒄 𝒔𝒆𝒓𝒊𝒆𝒔

291 𝑺 𝒏 = 𝒏 𝟐 ( 𝒂 𝟏 + 𝒂 𝒏 )

292 𝑮𝒆𝒏𝒆𝒓𝒂𝒍 𝑮𝒆𝒐𝒎𝒆𝒕𝒊𝒄 𝒔𝒆𝒓𝒊𝒆𝒔

293 𝒂 𝟏 + 𝒂 𝟏 𝒓 + 𝒂 𝟏 𝒓 𝟐 +…+ ( 𝒂 𝟏 𝒓 𝒏−𝟏 )

294 𝑺𝒖𝒎 𝒐𝒇 𝒂𝒏 𝑮𝒆𝒐𝒎𝒆𝒕𝒊𝒄 𝒔𝒆𝒓𝒊𝒆𝒔

295 𝑺 𝒏 = 𝒂 𝟏 (𝟏− 𝒓 𝒏 ) 𝟏−𝒓

296 𝑷𝒂𝒔𝒄𝒂 𝒍 ′ 𝒔 𝑻𝒓𝒊𝒂𝒏𝒈𝒍𝒆

297 1 1 2 1

298 𝑩𝒊𝒏𝒐𝒎𝒊𝒂𝒍 𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕 𝒏 𝒓

299 Combination of "n" things chosen "r" at a time

300 𝑩𝒊𝒏𝒐𝒎𝒊𝒂𝒍 𝑻𝒉𝒆𝒐𝒓𝒆𝒎 (𝒂+𝒃) 𝒏

301 𝒏 𝟎 𝒂 𝒏 + 𝒏 𝟏 𝒂 𝒏−𝟏 𝒃 𝟏 + 𝒏 𝟐 𝒂 𝒏−𝟐 𝒃 𝟐 +…+ 𝒏 𝒏 𝒃 𝒏

302 Polars

303 𝑻𝒐 𝒄𝒐𝒏𝒗𝒆𝒓𝒕 𝒇𝒓𝒐𝒎 𝒓𝒆𝒄𝒕𝒂𝒏𝒈𝒖𝒍𝒂𝒓 𝒕𝒐 𝒑𝒐𝒍𝒂𝒓 (𝟑 𝒘𝒂𝒚𝒔)

304 𝟏) 𝒙=𝒓∗𝒄𝒐𝒔𝜽 𝟐) 𝒚=𝒓∗𝒔𝒊𝒏𝜽 𝟑) 𝒙 𝟐 + 𝒚 𝟐 = 𝒓 𝟐

305 𝑰𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒕 𝒄𝒉𝒂𝒓𝒂𝒄𝒕𝒆𝒓𝒊𝒔𝒕𝒊𝒄𝒔
𝒐𝒇 𝒑𝒐𝒊𝒏𝒕𝒔 𝒊𝒏 𝒑𝒐𝒍𝒂𝒓 𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔

306 𝑬𝒂𝒄𝒉 𝒐𝒓𝒅𝒆𝒓𝒆𝒅 𝒑𝒂𝒊𝒓 𝒊𝒔 𝒏𝒐𝒕 𝒖𝒏𝒊𝒒𝒖𝒆

307 𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?

308 𝒍𝒊𝒎𝒂𝒄𝒐𝒏 𝒘𝒊𝒕𝒉 𝒊𝒏𝒏𝒆𝒓 𝒍𝒐𝒐𝒑

309 𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?

310 𝒄𝒂𝒓𝒅𝒊𝒐𝒊𝒅

311 𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?

312 𝒍𝒊𝒎𝒂𝒄𝒐𝒏 𝒘𝒊𝒕𝒉 𝒅𝒆𝒏𝒕/𝒅𝒊𝒎𝒑𝒍𝒆

313 𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?

314 𝒄𝒐𝒏𝒗𝒆𝒙 𝒍𝒊𝒎𝒂𝒄𝒐𝒏

315 𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?

316 𝒔𝒑𝒊𝒓𝒂𝒍

317 𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?

318 𝒑𝒆𝒕𝒂𝒍 𝒄𝒖𝒓𝒗𝒆

319 𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?

320 𝒍𝒆𝒎𝒏𝒊𝒔𝒄𝒂𝒕𝒆

321 𝒓= 𝒄 𝒄𝒐𝒔𝜽

322 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒍𝒊𝒏𝒆

323 𝒓= 𝒄 𝒔𝒊𝒏𝜽

324 𝒉𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝒍𝒊𝒏𝒆

325 𝜽=𝒄

326 𝒂 𝒍𝒊𝒏𝒆 𝒕𝒉𝒂𝒕 𝒎𝒂𝒌𝒆𝒔 𝒂𝒏 𝒂𝒏𝒈𝒍𝒆
𝒐𝒇 𝒄 𝒓𝒂𝒅𝒊𝒂𝒏𝒔 𝒘𝒊𝒕𝒉 𝒕𝒉𝒆 𝒑𝒐𝒍𝒂𝒓 𝒂𝒙𝒊𝒔

327 𝒓=𝒄

328 𝒂 𝒄𝒊𝒓𝒄𝒍𝒆 𝒘𝒊𝒕𝒉 𝒄𝒆𝒏𝒕𝒆𝒓 (𝟎,𝟎) 𝒓𝒂𝒅𝒊𝒖𝒔=𝒄

329 𝒓=𝟐𝒂𝒄𝒐𝒔𝜽+𝟐𝒃𝒔𝒊𝒏𝜽

330 𝒄𝒊𝒓𝒄𝒍𝒆 𝒘𝒊𝒕𝒉 𝒄𝒆𝒏𝒕𝒆𝒓 𝒂,𝒃 𝒓𝒂𝒅𝒊𝒖𝒔= 𝒂 𝟐 + 𝒃 𝟐

331 𝒓=𝜽

332 𝒔𝒑𝒊𝒓𝒂𝒍

333 𝒓=𝒂±𝒃𝒔𝒊𝒏𝜽 𝒓=𝒂±𝒃𝒄𝒐𝒔𝜽

334 𝒍𝒊𝒎𝒂𝒄𝒐𝒏/𝒄𝒂𝒓𝒅𝒊𝒐𝒅

335 𝒓=𝒂+𝒃𝒔𝒊𝒏𝜽 𝒑𝒐𝒊𝒏𝒕𝒔?

336 𝑷𝒐𝒊𝒏𝒕𝒔 𝒖𝒑

337 𝒓=𝒂−𝒃𝒔𝒊𝒏𝜽 𝒑𝒐𝒊𝒏𝒕𝒔?

338 𝑷𝒐𝒊𝒏𝒕𝒔 𝒅𝒐𝒘𝒏

339 𝒓=𝒂+𝒃𝒄𝒐𝒔𝜽 𝒑𝒐𝒊𝒏𝒕𝒔?

340 𝑷𝒐𝒊𝒏𝒕𝒔 𝒓𝒊𝒈𝒉𝒕

341 𝒓=𝒂−𝒃𝒄𝒐𝒔𝜽 𝒑𝒐𝒊𝒏𝒕𝒔?

342 𝑷𝒐𝒊𝒏𝒕𝒔 𝒍𝒆𝒇𝒕

343 𝒓=𝒂±𝒃𝒔𝒊𝒏𝜽 𝒓=𝒂±𝒃𝒄𝒐𝒔𝜽 𝟎< 𝒂 𝒃 <𝟏

344 𝒍𝒊𝒎𝒂𝒄𝒐𝒏 𝒘𝒊𝒕𝒉 𝒂 𝒍𝒐𝒐𝒑

345 𝒓=𝒂±𝒃𝒔𝒊𝒏𝜽 𝒓=𝒂±𝒃𝒄𝒐𝒔𝜽 𝒂 𝒃 =𝟏

346 𝒄𝒂𝒓𝒅𝒊𝒐𝒊𝒅

347 𝒓=𝒂±𝒃𝒔𝒊𝒏𝜽 𝒓=𝒂±𝒃𝒄𝒐𝒔𝜽 𝟏< 𝒂 𝒃 <𝟐

348 𝒍𝒊𝒎𝒂𝒄𝒐𝒏 𝒘𝒊𝒕𝒉 𝒂 𝒅𝒆𝒏𝒕/𝒅𝒊𝒎𝒑𝒍𝒆

349 𝒓=𝒂±𝒃𝒔𝒊𝒏𝜽 𝒓=𝒂±𝒃𝒄𝒐𝒔𝜽 𝒂 𝒃 >𝟐

350 𝒄𝒐𝒏𝒗𝒆𝒙 𝒍𝒊𝒎𝒂𝒄𝒐𝒏

351 𝒆𝒙𝒕𝒓𝒆𝒎𝒆 𝒗𝒂𝒍𝒖𝒆𝒔 𝒐𝒇 𝒂 𝒍𝒊𝒎𝒂𝒄𝒐𝒏/𝒄𝒂𝒓𝒅𝒊𝒐𝒊𝒅

352 𝒂 + 𝒃 𝒃 − 𝒂

353 𝒓=𝒂𝒄𝒐𝒔(𝒏𝜽) 𝒏 𝒊𝒔 𝒐𝒅𝒅

354 𝒑𝒆𝒕𝒂𝒍 𝒄𝒖𝒓𝒗𝒆 𝒘𝒊𝒕𝒉 𝒏 𝒑𝒆𝒕𝒂𝒍𝒔

355 𝒓=𝒂𝒔𝒊𝒏(𝒏𝜽) 𝒏 𝒊𝒔 𝒐𝒅𝒅

356 𝒑𝒆𝒕𝒂𝒍 𝒄𝒖𝒓𝒗𝒆 𝒘𝒊𝒕𝒉 𝒏 𝒑𝒆𝒕𝒂𝒍𝒔

357 𝒓=𝒂𝒄𝒐𝒔(𝒏𝜽) 𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏

358 𝒑𝒆𝒕𝒂𝒍 𝒄𝒖𝒓𝒗𝒆 𝒘𝒊𝒕𝒉 𝟐𝒏 𝒑𝒆𝒕𝒂𝒍𝒔

359 𝒓=𝒂𝒔𝒊𝒏(𝒏𝜽) 𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏

360 𝒑𝒆𝒕𝒂𝒍 𝒄𝒖𝒓𝒗𝒆 𝒘𝒊𝒕𝒉 𝟐𝒏 𝒑𝒆𝒕𝒂𝒍𝒔

361 𝒓=𝒂𝒔𝒊𝒏 𝒏𝜽 𝒓=𝒂𝒄𝒐𝒔(𝒏𝜽) 𝒂=?

362 𝒍𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒆𝒂𝒄𝒉 𝒑𝒆𝒕𝒂𝒍

363 𝒓 𝟐 =𝒂𝒄𝒐𝒔(𝟐𝜽) 𝒓 𝟐 =𝒂𝒔𝒊𝒏(𝟐𝜽)

364 𝒍𝒆𝒎𝒏𝒊𝒔𝒄𝒂𝒕𝒆

365 𝒓 𝟐 =𝒂𝒄𝒐𝒔(𝟐𝜽) 𝒓 𝟐 =𝒂𝒔𝒊𝒏 𝟐𝜽 𝒂= ?

366 𝒂 =𝒍𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒆𝒂𝒄𝒉 𝒑𝒆𝒕𝒂𝒍

367 Vectors

368 𝑴𝒂𝒈𝒏𝒊𝒕𝒖𝒅𝒆 𝒐𝒇 𝒂 𝒗𝒆𝒄𝒕𝒐𝒓< 𝒂 𝟏 , 𝒂 𝟐 >
𝑨 =

369 = ( 𝒂 𝟏 ) 𝟐 + ( 𝒂 𝟐 ) 𝟐

370 𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 𝒂𝒏𝒈𝒍𝒆 𝒐𝒇 𝒂 𝒗𝒆𝒄𝒕𝒐𝒓< 𝒂 𝟏 , 𝒂 𝟐 >
𝜽=

371 𝒕𝒂𝒏𝜽= 𝒂 𝟐 𝒂 𝟏

372 𝑻𝒉𝒆 𝒔𝒖𝒎 𝒐𝒇 𝒕𝒘𝒐 𝒗𝒆𝒄𝒕𝒐𝒓𝒔 𝒊𝒔…

373 𝑻𝒉𝒆 𝒔𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔

374 𝑻𝒉𝒆 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒐𝒇 𝒕𝒘𝒐 𝒗𝒆𝒄𝒕𝒐𝒓𝒔 𝒊𝒔…

375 𝑻𝒉𝒆 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔

376 𝑺𝒄𝒂𝒍𝒂𝒓 𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏
𝒊𝒇 𝒄 𝒊𝒔 𝒂 𝒔𝒄𝒂𝒍𝒂𝒓 𝒂𝒏𝒅 𝑨 𝒊𝒔 𝒕𝒉𝒆 𝒗𝒆𝒄𝒕𝒐𝒓< 𝒂 𝟏 , 𝒂 𝟐 > 𝒕𝒉𝒆𝒏 𝒄∗𝑨=

377 < 𝒄∗𝒂 𝟏 , 𝒄∗ 𝒂 𝟐 >

378 𝒊

379 <𝟏, 𝟎>

380 𝒋

381 <𝟎, 𝟏>

382 𝒊𝒏 𝒕𝒆𝒓𝒎𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒖𝒏𝒊𝒕 𝒗𝒆𝒄𝒕𝒐𝒓𝒔
<𝒂,𝒃> 𝒊𝒏 𝒕𝒆𝒓𝒎𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒖𝒏𝒊𝒕 𝒗𝒆𝒄𝒕𝒐𝒓𝒔

383 𝒂𝒊+𝒃𝒋

384 𝑨< 𝒂 𝟏 , 𝒂 𝟐 >, 𝑩< 𝒃 𝟏 , 𝒃 𝟐 >
𝑽𝒆𝒄𝒕𝒐𝒓 𝑨𝑩 𝒊𝒏 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝑨< 𝒂 𝟏 , 𝒂 𝟐 >, 𝑩< 𝒃 𝟏 , 𝒃 𝟐 >

385 < 𝒃 𝟏 − 𝒂 𝟏 , 𝒃 𝟐 − 𝒂 𝟐 >

386 𝑼𝒏𝒊𝒕 𝒗𝒆𝒄𝒕𝒐𝒓 𝒊𝒏 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒗
𝒆 𝒗 𝑼𝒏𝒊𝒕 𝒗𝒆𝒄𝒕𝒐𝒓 𝒊𝒏 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒗

387 𝒗 𝟏 𝒗 , 𝒗 𝟐 𝒗


Download ppt "Equations & Inequalities."

Similar presentations


Ads by Google