Download presentation
Presentation is loading. Please wait.
1
Equations & Inequalities
2
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑳𝒊𝒏𝒆𝒂𝒓 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔
& 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒊𝒆𝒔
3
𝑰𝒔𝒐𝒍𝒂𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆
4
Equations & Inequalities
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑸𝒖𝒂𝒅𝒓𝒂𝒕𝒊𝒄 Equations & Inequalities
5
Isolate Zero
6
Equations & Inequalities
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑷𝒐𝒍𝒚𝒏𝒐𝒎𝒂𝒊𝒍 Equations & Inequalities
7
Isolate Zero
8
Equations & Inequalities
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑹𝒂𝒕𝒊𝒐𝒏𝒂𝒍 Equations & Inequalities
9
Multiply by the LCD
10
Equations & Inequalities
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑽𝒂𝒍𝒖𝒆 Equations & Inequalities
11
Isolate the absolute value
12
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑽𝒂𝒍𝒖𝒆
Equations 𝒂 =
13
a, if a > 0 -a, if a < 0
14
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑽𝒂𝒍𝒖𝒆
Inequalities 𝒇(𝒙) > c means….
15
f(x) > c OR f(x)< -c
16
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑬𝒙𝒑𝒐𝒏𝒆𝒏𝒕𝒊𝒂𝒍 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔
17
Isolate the power
18
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑹𝒂𝒅𝒊𝒄𝒂𝒍 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔
19
Isolate the radical
20
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑳𝒐𝒈𝒂𝒓𝒊𝒕𝒉𝒎𝒊𝒄 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔
21
Write as the log of one expression and then isolate the log
22
𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝑻𝒓𝒊𝒈 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔 (3)
23
Use zero product property
Isolate the trig ratio Use zero product property Use a trig identity
24
Properties of Functions
25
𝑻𝒐 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆 𝒂 𝒈𝒓𝒂𝒑𝒉 𝒖𝒑…
26
…𝒂𝒅𝒅 𝒂 𝒏𝒖𝒎𝒃𝒆𝒓
27
𝑻𝒐 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆 𝒂 𝒈𝒓𝒂𝒑𝒉 𝒅𝒐𝒘𝒏…
28
…𝒔𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝒂 𝒏𝒖𝒎𝒃𝒆𝒓
29
𝑻𝒐 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆 𝒂 𝒈𝒓𝒂𝒑𝒉 𝒓𝒊𝒈𝒉𝒕…
30
…𝒔𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝒂 𝒏𝒖𝒎𝒃𝒆𝒓 "𝒘𝒊𝒕𝒉𝒊𝒏"
31
𝑻𝒐 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆 𝒂 𝒈𝒓𝒂𝒑𝒉 𝒍𝒆𝒇𝒕…
32
…𝒂𝒅𝒅 𝒂 𝒏𝒖𝒎𝒃𝒆𝒓
33
𝑻𝒐 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝒔𝒕𝒓𝒆𝒕𝒄𝒉 𝒂 𝒈𝒓𝒂𝒑𝒉
34
…𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒚 𝒃𝒚 𝒂 𝒏𝒖𝒎𝒃𝒆𝒓 c (c>1)
35
𝑻𝒐 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝒔𝒉𝒓𝒊𝒏𝒌 𝒂 𝒈𝒓𝒂𝒑𝒉
36
…𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒚 𝒃𝒚 𝒂 𝒏𝒖𝒎𝒃𝒆𝒓 c (0<c<1)
37
𝒇 𝒙 +𝒌
38
𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆𝒔 𝒈𝒓𝒂𝒑𝒉 𝒖𝒑 𝒌 𝒖𝒏𝒊𝒕𝒔
39
𝒇 𝒙 −𝒌
40
𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆𝒔 𝒈𝒓𝒂𝒑𝒉 𝒅𝒐𝒘𝒏 𝒌 𝒖𝒏𝒊𝒕𝒔
41
𝒌∗𝒇 𝒙 , 𝒘𝒉𝒆𝒓𝒆 𝒌>𝟏
42
𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒔𝒕𝒓𝒆𝒕𝒄𝒉
43
𝒌∗𝒇 𝒙 , 𝒘𝒉𝒆𝒓𝒆 𝟎<𝒌<𝟏
44
𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒔𝒉𝒓𝒊𝒏𝒌
45
𝒇 𝒙+𝒉
46
𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆𝒔 𝒈𝒓𝒂𝒑𝒉 𝒍𝒆𝒇𝒕 𝒉 𝒖𝒏𝒊𝒕𝒔
47
𝒇 𝒙−𝒉
48
𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆𝒔 𝒈𝒓𝒂𝒑𝒉 𝒓𝒊𝒈𝒉𝒕 𝒉 𝒖𝒏𝒊𝒕𝒔
49
𝑻𝒐 𝒇𝒊𝒏𝒅 𝒙−𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕𝒔
50
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝟎 𝒇𝒐𝒓 𝒚
51
𝑻𝒐 𝒇𝒊𝒏𝒅 𝒚−𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕
52
𝑺𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝟎 𝒇𝒐𝒓 𝒙
53
𝑯𝒐𝒘 𝒕𝒐 𝒇𝒊𝒏𝒅 𝒊𝒏𝒗𝒆𝒓𝒔𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
(𝟒 𝒔𝒕𝒆𝒑𝒔)
54
𝟏) 𝑹𝒆𝒑𝒍𝒂𝒄𝒆 𝒇 𝒙 𝒘𝒊𝒕𝒉 𝒚 𝟐) 𝑺𝒘𝒊𝒕𝒄𝒉 𝒙 & 𝒚 𝟑) 𝑺𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒏𝒆𝒘 𝒚 𝟒) 𝑹𝒆𝒑𝒍𝒂𝒄𝒆 𝒈 𝒙 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒏𝒆𝒘 𝒚
55
𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 𝒐𝒇 𝒊𝒏𝒗𝒆𝒓𝒔𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
56
𝟏) 𝑺𝒚𝒎𝒎𝒆𝒕𝒓𝒊𝒄 𝒘𝒊𝒕𝒉 𝒚=𝒙 𝟐) 𝒇 𝒈 𝒙 =𝒈 𝒇 𝒙 =𝒙 𝟑) 𝒐𝒏𝒆−𝒕𝒐−𝒐𝒏𝒆 𝟒) 𝑫𝒐𝒎𝒂𝒊𝒏 & 𝑹𝒂𝒏𝒈𝒆 𝒂𝒓𝒆 𝒊𝒏𝒕𝒆𝒓𝒄𝒉𝒂𝒏𝒈𝒆𝒅
57
𝒇 𝒌𝒙 , 𝒘𝒉𝒆𝒓𝒆 𝒌>𝟏
58
𝑯𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝒔𝒉𝒓𝒊𝒏𝒌
59
𝒇 𝒌𝒙 , 𝒘𝒉𝒆𝒓𝒆 𝟎<𝒌<𝟏
60
𝑯𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝒔𝒕𝒓𝒆𝒕𝒄𝒉
61
𝒇 −𝒙
62
𝑹𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒂𝒄𝒓𝒐𝒔𝒔 𝒕𝒉𝒆 𝒚−𝒂𝒙𝒊𝒔
63
−𝒇 𝒙
64
𝑹𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒂𝒄𝒓𝒐𝒔𝒔 𝒙−𝒂𝒙𝒊𝒔
65
−𝒇 −𝒙
66
𝑹𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒐𝒓𝒊𝒈𝒊𝒏
67
𝒇 𝒙
68
𝑹𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝑸𝑰 𝒂𝒏𝒅 𝑸𝑰𝑽
𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒚−𝒂𝒙𝒊𝒔 (𝒍𝒐𝒔𝒆 𝑸𝑰𝑰 & 𝑸𝑰𝑰𝑰)
69
𝒇(𝒙)
70
𝑹𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝑸𝑰𝑰𝑰 𝒂𝒏𝒅 𝑸𝑰𝑽
𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒙−𝒂𝒙𝒊𝒔 (𝒍𝒐𝒔𝒆 𝑸𝑰 & 𝑸𝑰𝑰)
71
𝟏 𝒇 𝒙
72
𝒚→ 𝟎 + ↔ 𝒚→+∞ 𝒚→ 𝟎 − ↔ 𝒚→−∞\ 𝒚=𝟎↔ 𝒚 𝒊𝒔 𝒖𝒏𝒅𝒆𝒇𝒊𝒏𝒆𝒅
73
𝒇 𝒉−𝒙
74
=𝒇 𝒙+𝒉 𝒕𝒉𝒆𝒏 𝒓𝒆𝒑𝒍𝒂𝒄𝒆 𝒙 𝒃𝒚 −𝒙 (𝐫𝐞𝐟𝐥𝐞𝐜𝐭𝐢𝐧 𝐨𝐟 𝐟 𝐱+𝐡 𝐭𝐡𝐫𝐨𝐮𝐠𝐡 𝐲−𝐚𝐱𝐢𝐬)
75
𝒇(𝒙) 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒂𝒔 𝒂 𝒑𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
76
𝒇 𝒙 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝒘𝒉𝒆𝒓𝒆 𝒇 𝒙 ≥𝟎 −𝒇 𝒙 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝒘𝒉𝒆𝒓𝒆 𝒇 𝒙 <𝟎
77
𝒆𝒗𝒆𝒏 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
78
𝒂 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒕𝒉𝒂𝒕 𝒊𝒔 𝒔𝒚𝒎𝒎𝒆𝒕𝒓𝒊𝒄 𝒕𝒐 𝒊𝒕𝒔𝒆𝒍𝒇 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒕𝒉𝒆 𝒚−𝒂𝒙𝒊𝒔 𝒇 −𝒙 =𝒇(𝒙)
𝒕𝒐 𝒊𝒕𝒔𝒆𝒍𝒇 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒕𝒉𝒆 𝒚−𝒂𝒙𝒊𝒔 𝒇 −𝒙 =𝒇(𝒙)
79
𝒐𝒅𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
80
𝒂 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒕𝒉𝒂𝒕 𝒊𝒔 𝒔𝒚𝒎𝒎𝒆𝒕𝒓𝒊𝒄 𝒕𝒐 𝒊𝒕𝒔𝒆𝒍𝒇 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒕𝒉𝒆 𝒐𝒓𝒊𝒈𝒊𝒏
−𝒇 −𝒙 =𝒇(𝒙)
81
Algebraic Functions
82
𝒇 𝒙 =𝒙
83
𝑳𝒊𝒏𝒆𝒂𝒓 𝑭𝒂𝒎𝒊𝒍𝒚
84
𝒇 𝒙 = 𝒙 𝟐 , 𝒙 𝟒 , 𝒙 𝟔 …
85
𝑷𝒂𝒓𝒂𝒃𝒐𝒍𝒊𝒄 𝑭𝒂𝒎𝒊𝒍𝒚
86
𝒇 𝒙 = 𝒙 𝟑 , 𝒙 𝟓 , 𝒙 𝟕 …
87
𝑪𝒖𝒃𝒊𝒄 𝑭𝒂𝒎𝒊𝒍𝒚
88
𝒇 𝒙 = 𝒙 𝟏 𝟐 , 𝒙 𝟏 𝟒 , 𝒙 𝟏 𝟔 …
89
𝑺𝒒𝒖𝒂𝒓𝒆 𝑹𝒐𝒐𝒕 𝑭𝒂𝒎𝒊𝒍𝒚
90
𝒇 𝒙 = 𝒙 𝟏 𝟑 , 𝒙 𝟏 𝟓 , 𝒙 𝟏 𝟕 …
91
𝑪𝒖𝒃𝒊𝒄 𝑹𝒐𝒐𝒕 𝑭𝒂𝒎𝒊𝒍𝒚
92
𝒇 𝒙 = 𝒙 −𝟏 , 𝒙 −𝟑 , 𝒙 −𝟓 …
93
𝑹𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏
94
𝒇 𝒙 = 𝒙 −𝟐 , 𝒙 −𝟒 , 𝒙 −𝟔 …
95
𝑩𝒆𝒍𝒍 𝑪𝒖𝒓𝒗𝒆 𝑭𝒂𝒎𝒊𝒍𝒚
96
𝒇 𝒙 = 𝒙 𝟐 𝟑 , 𝒙 𝟒 𝟓 , 𝒙 𝟔 𝟕 …
97
𝑩𝒊𝒓𝒅 𝑭𝒂𝒎𝒊𝒍𝒚
98
𝒇 𝒙 = 𝒙
99
𝑮𝒓𝒆𝒂𝒕𝒆𝒔𝒕 𝒊𝒏𝒕𝒆𝒈𝒆𝒓 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
100
𝒇 𝒙 = 𝒙
101
𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑽𝒂𝒍𝒖𝒆
102
𝒇 𝒙 =𝒂 𝒙 𝟐 +𝒃𝒙+𝒄
103
𝑷𝒂𝒓𝒂𝒃𝒐𝒍𝒂 𝑭𝒂𝒎𝒊𝒍𝒚
104
𝒇 𝒙 =𝒂 𝒙 𝟐 +𝒃𝒙+𝒄 𝑽𝒆𝒓𝒕𝒆𝒙?
105
𝑽𝒆𝒓𝒕𝒆𝒙 → 𝒉, 𝒌 𝒉= −𝒃 𝟐𝒂 𝒌=𝒇( −𝒃 𝟐𝒂 )
106
𝒇 𝒙 = 𝒂 𝒏 𝒙 𝒏 + 𝒂 𝒏−𝟏 𝒙 𝒏−𝟏 +…+ 𝒂 𝟎 𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏
107
𝟏) 𝒆𝒏𝒅 𝒃𝒆𝒉𝒂𝒗𝒊𝒐𝒓→𝒑𝒂𝒓𝒂𝒃𝒐𝒍𝒊𝒄
𝟐) 𝐢𝐧𝐭𝐞𝐫𝐜𝐞𝐩𝐭𝐬 𝟑) 𝐫𝐞𝐥𝐚𝐭𝐢𝐯𝐞 𝐞𝐱𝐭𝐫𝐞𝐦𝐚 𝐧−𝟏 𝟒)𝐬𝐲𝐦𝐦𝐞𝐭𝐫𝐲
108
𝒇 𝒙 = 𝒂 𝒏 𝒙 𝒏 + 𝒂 𝒏−𝟏 𝒙 𝒏−𝟏 +…+ 𝒂 𝟎 𝒏 𝒊𝒔 𝒐𝒅𝒅
109
𝟏) 𝒐𝒖𝒕𝒔𝒊𝒅𝒆 𝒃𝒆𝒉𝒂𝒗𝒊𝒐𝒓→𝒄𝒖𝒃𝒊𝒄
𝟐) 𝐢𝐧𝐭𝐞𝐫𝐜𝐞𝐩𝐭𝐬 𝟑) 𝐫𝐞𝐥𝐚𝐭𝐢𝐯𝐞 𝐞𝐱𝐭𝐫𝐞𝐦𝐚 𝐧−𝟏 𝟒)𝐬𝐲𝐦𝐦𝐞𝐭𝐫𝐲
110
𝒇 𝒙 = 𝒂 𝒏 𝒙 𝒏 + 𝒂 𝒏−𝟏 𝒙 𝒏−𝟏 +…+ 𝒂 𝟎 𝒃 𝒎 𝒙 𝒎 + 𝒃 𝒎−𝟏 𝒙 𝒎−𝟏 +…+ 𝒃 𝟎
111
𝟏) 𝒂𝒔𝒚𝒎𝒑𝒕𝒐𝒕𝒆𝒔 𝟐) 𝐢𝐧𝐭𝐞𝐫𝐜𝐞𝐩𝐭𝐬 𝟑) 𝐬𝐲𝐦𝐦𝐞𝐭𝐫𝐲 𝟒) 𝐩𝐥𝐨𝐭 𝐩𝐨𝐢𝐧𝐭𝐬, 𝐢𝐟 𝐧𝐞𝐞𝐝𝐞𝐝
112
𝑻𝒐 𝒇𝒊𝒏𝒅 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒂𝒔𝒚𝒎𝒑𝒕𝒐𝒕𝒆𝒔…
113
𝑺𝒆𝒕 𝒅𝒆𝒏𝒐𝒎𝒊𝒏𝒂𝒕𝒐𝒓 𝒐𝒇 𝒔𝒊𝒎𝒑𝒍𝒊𝒇𝒊𝒆𝒅 𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒆𝒙𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏 𝒆𝒒𝒖𝒂𝒍 𝒕𝒐 𝟎
114
𝑻𝒐 𝒇𝒊𝒏𝒅 𝒉𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝒂𝒔𝒚𝒎𝒑𝒕𝒐𝒕𝒆𝒔
𝒐𝒇 𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒔…
115
𝒏=𝒎, 𝒉𝒐𝒓𝒊𝒛. 𝒚= 𝒂 𝒃 𝒏<𝒎, 𝒉𝒐𝒓𝒊𝒛. 𝒚=𝟎 𝒏>𝒎, 𝒏𝒐 𝒉𝒐𝒓𝒊𝒛. 𝒂𝒔𝒚𝒎
116
𝒇 𝒙 = 𝒄− 𝒙 𝟐 , 𝒄>𝟎
117
𝑪𝒊𝒓𝒄𝒖𝒍𝒂𝒓 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
118
𝒇 𝒙 = 𝒙 𝟐 −𝒄 , 𝒄>𝟎
119
𝑯𝒚𝒑𝒆𝒓𝒃𝒐𝒍𝒊𝒄 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
120
𝒇 𝒙 = 𝒙 𝟐 +𝒄
121
𝑯𝒚𝒑𝒆𝒓𝒃𝒐𝒍𝒊𝒄 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
122
Trigonometric Functions
123
𝑳𝒂𝒘 𝒐𝒇 𝑺𝒊𝒏𝒆𝒔
124
𝒂 𝒔𝒊𝒏 𝑨 = 𝒃 𝒔𝒊𝒏 𝑩 = 𝒄 𝒔𝒊𝒏 𝑪
125
𝑳𝒂𝒘 𝒐𝒇 𝑪𝒐𝒔𝒊𝒏𝒆𝒔
126
𝒂 𝟐 = 𝒃 𝟐 + 𝒄 𝟐 −𝟐𝒃𝒄∙𝑪𝒐𝒔𝑨 𝒃 𝟐 = 𝒂 𝟐 + 𝒄 𝟐 −𝟐𝒂𝒄∙𝑪𝒐𝒔𝑨 𝒄 𝟐 = 𝒂 𝟐 + 𝒃 𝟐 −𝟐𝒂𝒃∙𝑪𝒐𝒔𝑨
127
𝑳𝒂𝒘 𝒐𝒇 𝑺𝒊𝒏𝒆𝒔 𝒊𝒔 𝒖𝒔𝒆𝒅 𝒇𝒐𝒓…
128
𝑨𝑨𝑺, 𝑨𝑺𝑨, 𝑺𝑺𝑨
129
𝑳𝒂𝒘 𝒐𝒇 𝑪𝒐𝒔𝒊𝒏𝒆𝒔 𝒊𝒔 𝒖𝒔𝒆𝒅 𝒇𝒐𝒓…
130
𝑺𝑺𝑺, 𝑺𝑨𝑺
131
𝑨𝒓𝒆𝒂 𝒐𝒇 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 (SAS)
132
𝑨= 𝟏 𝟐 𝒂𝒃∙𝑺𝒊𝒏𝑪 𝑨= 𝟏 𝟐 𝒃𝒄∙𝑺𝒊𝒏𝑨 𝑨= 𝟏 𝟐 𝒂𝒄∙𝑺𝒊𝒏𝑩
133
𝑨𝒓𝒆𝒂 𝒐𝒇 𝒂 𝑪𝒊𝒓𝒄𝒍𝒆 𝑺𝒆𝒄𝒕𝒐𝒓
134
𝑨= 𝟏 𝟐 𝒓 𝟐 𝜽
135
𝑨𝒓𝒄 𝑳𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒂 𝒄𝒊𝒓𝒄𝒍𝒆
136
𝑺=𝒓𝜽
137
Signs of Trig Ratios
138
All Students Take Calculus
139
𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒔𝒊𝒏 𝒙
141
𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒄𝒐𝒔 𝒙
143
𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒕𝒂𝒏 𝒙
145
𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒄𝒔𝒄 𝒙
147
𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒔𝒆𝒄 𝒙
149
𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒄𝒐𝒕 𝒙
151
𝑷𝒆𝒓𝒊𝒐𝒅 𝒐𝒇 𝒔𝒊𝒏 𝒙, 𝒄𝒐𝒔 𝒙, 𝒔𝒆𝒄 𝒙 & 𝒄𝒔𝒄 𝒙
152
𝟐𝝅
153
𝑷𝒆𝒓𝒊𝒐𝒅 𝒐𝒇 𝒕𝒂𝒏 𝒙 & 𝒄𝒐𝒕 𝒙
154
𝝅
155
𝑨𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆 𝒐𝒇 𝑻𝒓𝒊𝒈 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒔
156
𝒔𝒊𝒏 𝒙 →𝟏 𝒄𝒐𝒔 𝒙→𝟏 𝒕𝒂𝒏 𝒙 →𝑵𝒐𝒏𝒆 𝒐𝒓 𝑵𝑨 𝒄𝒔𝒄 𝒙→𝟏 𝒔𝒆𝒄 𝒙→𝟏 𝒄𝒐𝒕 𝒙→𝑵𝒐𝒏𝒆 𝒐𝒓 𝑵𝑨
157
𝒇 𝒙 =𝒂∙𝒔𝒊𝒏 𝒃 𝒙−𝒄 +𝒅
158
𝒂=𝒂𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆 𝒃→ 𝟐𝝅 𝒃 𝒐𝒓 𝝅 𝒃 𝒊𝒔 𝒑𝒆𝒓𝒊𝒐𝒅 𝒄=𝑷𝒉𝒂𝒔𝒆 𝒔𝒉𝒊𝒇𝒕 (𝑯𝒐𝒓𝒊𝒛) 𝒅=𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝑺𝒉𝒊𝒇𝒕
159
𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒙 ∙𝒔𝒊𝒏 𝒙
161
𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒆 𝒙 ∙𝒔𝒊𝒏 𝒙
163
𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒙∙𝒔𝒊𝒏 𝒙
165
𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝟏+𝒔𝒊𝒏 𝒙
167
𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒙+𝒔𝒊𝒏 𝒙
169
𝑮𝒓𝒂𝒑𝒉 𝒐𝒇 𝒙 +𝒔𝒊𝒏 𝒙
171
𝑭𝒖𝒏𝒅𝒂𝒎𝒆𝒏𝒕𝒂𝒍 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔
172
𝒕𝒂𝒏 𝒙= 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒄𝒐𝒕 𝒙= 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒙
173
𝑷𝒚𝒕𝒉𝒂𝒈𝒐𝒓𝒆𝒂𝒏 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔
174
𝒔𝒊𝒏 𝟐 𝒙+ 𝒄𝒐𝒔 𝟐 𝒙=𝟏 𝟏+ 𝒄𝒐𝒕 𝟐 𝒙= 𝒄𝒔𝒄 𝟐 𝒙 𝒕𝒂𝒏 𝟐 𝒙+𝟏= 𝒔𝒆𝒄 𝟐 𝒙
175
𝒔𝒊𝒏 𝟐 𝒙+ 𝒄𝒐𝒔 𝟐 𝒙=𝟏 𝑻𝒘𝒐 𝒐𝒕𝒉𝒆𝒓 𝒇𝒐𝒓𝒎𝒔
176
𝟏− 𝒔𝒊𝒏 𝟐 𝒙= 𝒄𝒐𝒔 𝟐 𝒙 𝟏− 𝒄𝒐𝒔 𝟐 𝒙= 𝒔𝒊𝒏 𝟐 𝒙
177
𝑹𝒆𝒄𝒊𝒑𝒓𝒐𝒄𝒂𝒍 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔
178
𝒄𝒔𝒄 𝒙= 𝟏 𝒔𝒊𝒏 𝒙 𝒔𝒆𝒄 𝒙= 𝟏 𝒄𝒐𝒔 𝒙 𝒄𝒐𝒕 𝒙= 𝟏 𝒕𝒂𝒏 𝒙
179
𝑪𝒐𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔
180
𝒔𝒊𝒏 ( 𝟏 𝟐 𝝅−𝒙)=𝒄𝒐𝒔 𝒙 𝒄𝒐𝒔 ( 𝟏 𝟐 𝝅−𝒙)=𝒔𝒊𝒏 𝒙 𝒕𝒂𝒏 ( 𝟏 𝟐 𝝅−𝒙)=𝒄𝒐𝒕 𝒙
181
𝑷𝒐𝒘𝒆𝒓 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔
182
𝒔𝒊𝒏 𝟐 𝒙= 𝟏−𝒄𝒐𝒔 𝟐𝒙 𝟐 𝒄𝒐𝒔 𝟐 𝒙= 𝟏+𝒄𝒐𝒔 𝟐𝒙 𝟐
183
𝑫𝒐𝒖𝒃𝒍𝒆 𝑨𝒏𝒈𝒍𝒆 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔
184
𝒔𝒊𝒏 𝟐𝒙=𝟐 𝒔𝒊𝒏𝒙 𝒄𝒐𝒔𝒙 𝒄𝒐𝒔 𝟐𝒙= 𝒔𝒊𝒏 𝟐 𝒙− 𝒄𝒐𝒔 𝟐 𝒙
185
𝑺𝒖𝒎 & 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔
186
𝒔𝒊𝒏 𝒙+𝒚 = 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒚+𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒚 𝒔𝒊𝒏 𝒙−𝒚 = 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒚−𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒚
𝒔𝒊𝒏 𝒙+𝒚 = 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒚+𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒚 𝒔𝒊𝒏 𝒙−𝒚 = 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒚−𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒚 𝒄𝒐𝒔 𝒙+𝒚 = 𝒄𝒐𝒔 𝒙 𝒄𝒐𝒔 𝒚−𝒔𝒊𝒏 𝒙 𝒔𝒊𝒏 𝒚 𝒄𝒐𝒔 𝒙−𝒚 = 𝒄𝒐𝒔 𝒙 𝒄𝒐𝒔 𝒚+𝒔𝒊𝒏 𝒙 𝒔𝒊𝒏 𝒚
187
Conics
188
𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑭𝒐𝒓𝒎 𝒐𝒇 𝒂 𝑪𝒐𝒏𝒊𝒄
189
𝑨 𝒙 𝟐 +𝑩 𝒚 𝟐 +𝑪𝒙+𝑫𝒚+𝑬+𝟎 A & B cannot both = 0
190
𝑷𝑨𝑹𝑨𝑩𝑶𝑳𝑨 𝐲=𝐚 𝒙−𝒉 𝟐 +𝒌 Focus = ??? Directrix = ???
191
Directrix---> 𝐲=𝐤− 𝟏 𝟒𝒂
Focus---> 𝒉, 𝒌+ 𝟏 𝟒𝒂 Directrix---> 𝐲=𝐤− 𝟏 𝟒𝒂
192
𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 𝒇𝒐𝒓𝒎 𝒐𝒇 𝒂 𝒄𝒊𝒓𝒄𝒍𝒆
193
(𝒙−𝒉) 𝟐 𝒂 𝟐 + (𝒚−𝒌) 𝟐 𝒃 𝟐 =𝟏 when a = b OR (𝒙−𝒉) 𝟐 + (𝒚−𝒌) 𝟐 = 𝒓 𝟐
194
𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 𝒇𝒐𝒓𝒎 𝒐𝒇 𝒂 𝒆𝒍𝒍𝒊𝒑𝒔𝒆
195
(𝒙−𝒉) 𝟐 𝒂 𝟐 + (𝒚−𝒌) 𝟐 𝒃 𝟐 =𝟏 (𝒙−𝒉) 𝟐 𝒃 𝟐 + (𝒚−𝒌) 𝟐 𝒂 𝟐 =𝟏 where a > b
196
𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 𝒇𝒐𝒓𝒎 𝒐𝒇 𝒂 𝒉𝒚𝒑𝒆𝒓𝒃𝒐𝒍𝒂
197
(𝒙−𝒉) 𝟐 𝒂 𝟐 − (𝒚−𝒌) 𝟐 𝒃 𝟐 =𝟏 (𝒚−𝒌) 𝟐 𝒂 𝟐 − (𝒙−𝒉) 𝟐 𝒃 𝟐 =𝟏
198
𝑰𝒏 𝒂 𝑪𝒐𝒏𝒊𝒄 𝒔𝒆𝒄𝒕𝒊𝒐𝒏, 𝒄= ?
199
𝑻𝒉𝒆 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒇𝒓𝒐𝒎 𝒕𝒉𝒆 𝒄𝒆𝒏𝒕𝒆𝒓
𝒕𝒐 𝒕𝒉𝒆 𝒇𝒐𝒄𝒖𝒔/𝒇𝒐𝒄𝒊
200
To find the foci…
201
𝑬𝑳𝑳𝑰𝑷𝑺𝑬 𝒄 𝟐 = 𝒂 𝟐 − 𝒃 𝟐 𝑯𝒀𝑷𝑬𝑹𝑩𝑶𝑳𝑨 𝒄 𝟐 = 𝒂 𝟐 + 𝒃 𝟐
202
To find the asymptotes for a hyperbola…
203
(𝒚−𝒌)=± 𝒃 𝒂 (𝒙−𝒉)
204
(𝒙−𝒉) 𝟐 𝒂 𝟐 + (𝒚−𝒌) 𝟐 𝒃 𝟐 =𝟎 Is the graph of….
205
Point (h, k)
206
(𝒙−𝒉) 𝟐 𝒂 𝟐 + (𝒚−𝒌) 𝟐 𝒃 𝟐 =−𝑪 Is the graph of….
207
∅ The empty set
208
(𝒙−𝒉) 𝟐 𝒂 𝟐 − (𝒚−𝒌) 𝟐 𝒃 𝟐 =𝟎 Is the graph of….
209
Two lines (asymptotes)
210
(𝒙−𝒉) 𝟐 𝒂 𝟐 − 𝒚−𝒌 𝟐 𝒃 𝟐 =−𝑪 Is the graph of….
211
A hyperbola (still!!!)
212
Logarithmic & Exponential Functions
213
𝒂 𝒙 X is a positive integer
214
=𝒂∗𝒂∗𝒂…. (𝒙 𝒕𝒊𝒎𝒆𝒔)
215
𝒂 −𝒙 X is a positive integer
216
𝟏 𝒂 𝒙
217
𝒂 𝒙 ∗ 𝒂 𝒚
218
𝒂 𝒙+𝒚
219
𝒂 𝒙 𝒂 𝒚
220
𝒂 𝒙−𝒚
221
( 𝒂 𝒙 ) 𝒚
222
𝒂 𝒙𝒚
223
𝒂 𝟎
224
𝟏
225
𝒂 𝒙 𝒚
226
X is the power, y is the root
227
Radical form for… 𝒂 𝒎 𝒏
228
𝒏 𝒂 𝒎 or ( 𝒏 𝒂 ) 𝒎
229
𝒏 𝒙 𝒏 , where n is even
230
𝒙
231
e = (2 diff expressions)
232
𝟏+ 𝟏 𝒙 𝒙 as 𝒙→∞ or 𝟏+𝒙 𝟏 𝒙 as 𝒙→𝟎
233
e is approximately…
234
2.718…
235
𝒇 𝒙 = 𝒃 𝒙 , 𝒃>𝟏
237
𝒇 𝒙 = 𝒃 𝒙 , 𝟎<𝒃<𝟏
239
𝒇 𝒙 = 𝒆 𝒙
241
𝒍𝒐𝒈 𝒂 (𝒙𝒚)
242
𝒍𝒐𝒈 𝒂 𝒙 + 𝒍𝒐𝒈 𝒂 (𝒚)
243
𝒍𝒐𝒈 𝒂 𝒙 𝒚
244
𝒍𝒐𝒈 𝒂 𝒙 − 𝒍𝒐𝒈 𝒂 (𝒚)
245
𝒍𝒐𝒈 𝒂 𝒙 𝒚
246
𝒚∗ 𝒍𝒐𝒈 𝒂 𝒙
247
Change of Base Formula 𝒍𝒐𝒈 𝒃 𝒂
248
𝒍𝒐𝒈 𝒂 𝒍𝒐𝒈 𝒃 = 𝒍𝒏 𝒂 𝒍𝒏 𝒃
249
𝒍𝒏(𝟏)
250
𝟎
251
𝒍𝒏(𝒆)
252
𝟏
253
𝒇 𝒙 = 𝒍𝒐𝒈 𝒃 (𝒙), 𝒃>𝟏
255
𝒇 𝒙 = 𝒍𝒐𝒈 𝒃 𝒙 , 𝟎<𝒃<𝟏
257
𝒇 𝒙 =𝒍𝒏 𝒙
259
𝑰𝒏𝒗𝒆𝒔𝒕𝒎𝒆𝒏𝒕 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 Simple interest A=
260
r = interest rate (decimal)
𝑨=𝑷 𝟏+𝒓𝒕 P=principle r = interest rate (decimal) t = # of years
261
𝑰𝒏𝒗𝒆𝒔𝒕𝒎𝒆𝒏𝒕 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 Compound interest A=
262
r = interest rate (decimal)
𝑨=𝑷 𝟏+ 𝒓 𝒏 𝒏𝒕 P=principle r = interest rate (decimal) t = # of years
263
𝑰𝒏𝒗𝒆𝒔𝒕𝒎𝒆𝒏𝒕 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 Continuous interest A=
264
r = interest rate (decimal)
𝑨=𝑷 𝒆 𝒓𝒕 P=principle r = interest rate (decimal) t = # of years
265
𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝑮𝒓𝒐𝒘𝒕𝒉 y =
266
𝐲=𝑩 𝒆 𝒌𝒕 , 𝒌>𝟎
267
𝑹𝒂𝒅𝒊𝒐𝒂𝒄𝒕𝒊𝒗𝒆 𝑫𝒆𝒄𝒂𝒚 y =
268
𝐲=𝑩 𝒆 𝒌𝒕 , 𝒌<𝟎
269
𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝑮𝒓𝒐𝒘𝒕𝒉 Model
271
𝑹𝒂𝒅𝒊𝒐𝒂𝒄𝒕𝒊𝒗𝒆 𝑫𝒆𝒄𝒂𝒚 Model
273
𝑩𝒐𝒖𝒏𝒅𝒆𝒅 𝑮𝒓𝒐𝒘𝒕𝒉 y =
274
𝐲=𝑨−𝑩 𝒆 −𝒌𝒕 , 𝒕≥𝟎
275
𝑳𝒐𝒈𝒊𝒔𝒕𝒊𝒄 𝑮𝒓𝒐𝒘𝒕𝒉 y =
276
𝐲= 𝑨 𝟏+𝑩 𝒆 −𝑨𝒌𝒕 𝒕≥𝟎
277
𝑩𝒐𝒖𝒏𝒅𝒆𝒅 𝑮𝒓𝒐𝒘𝒕𝒉 Graph
278
A A-B
279
𝑳𝒐𝒈𝒊𝒔𝒕𝒊𝒄 𝑮𝒓𝒐𝒘𝒕𝒉 Graph
280
A A/(1+B)
281
Sequence & Series
282
𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
283
𝒂 𝒔𝒆𝒕 𝒐𝒇 𝒏𝒖𝒎𝒃𝒆𝒓𝒔 𝒕𝒉𝒂𝒕 𝒔𝒉𝒂𝒓𝒆
𝒂 𝒄𝒐𝒎𝒎𝒐𝒏 𝒑𝒓𝒐𝒑𝒆𝒓𝒕𝒚 𝒂𝒏𝒅 𝒘𝒉𝒐𝒔𝒆 𝒅𝒐𝒎𝒂𝒊𝒏 𝒊𝒔 𝒕𝒉𝒆 𝒔𝒆𝒕 𝒐𝒇 𝒂𝒍𝒍 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒊𝒏𝒕𝒆𝒈𝒆𝒓𝒔
284
𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒕 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
285
𝒂 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒕𝒉𝒂𝒕 𝒉𝒂𝒔 𝒂 𝒍𝒊𝒎𝒊𝒕
𝐚𝐬 𝐧→∞
286
𝒅𝒊𝒗𝒆𝒓𝒈𝒆𝒏𝒕 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
287
𝒂 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒕𝒉𝒂𝒕 𝐢𝐬 𝐧𝐨𝐭 𝐜𝐨𝐧𝐯𝐞𝐫𝐠𝐞𝐧𝐭
288
𝑮𝒆𝒏𝒆𝒓𝒂𝒍 𝑨𝒓𝒊𝒕𝒉𝒎𝒆𝒕𝒊𝒄 𝒔𝒆𝒓𝒊𝒆𝒔
289
𝒂 𝟏 + 𝒂 𝟏 +𝒅 +…+ ( 𝒂 𝟏 + 𝒏−𝟏 𝒅)
290
𝑺𝒖𝒎 𝒐𝒇 𝒂𝒏 𝑨𝒓𝒊𝒕𝒉𝒎𝒆𝒕𝒊𝒄 𝒔𝒆𝒓𝒊𝒆𝒔
291
𝑺 𝒏 = 𝒏 𝟐 ( 𝒂 𝟏 + 𝒂 𝒏 )
292
𝑮𝒆𝒏𝒆𝒓𝒂𝒍 𝑮𝒆𝒐𝒎𝒆𝒕𝒊𝒄 𝒔𝒆𝒓𝒊𝒆𝒔
293
𝒂 𝟏 + 𝒂 𝟏 𝒓 + 𝒂 𝟏 𝒓 𝟐 +…+ ( 𝒂 𝟏 𝒓 𝒏−𝟏 )
294
𝑺𝒖𝒎 𝒐𝒇 𝒂𝒏 𝑮𝒆𝒐𝒎𝒆𝒕𝒊𝒄 𝒔𝒆𝒓𝒊𝒆𝒔
295
𝑺 𝒏 = 𝒂 𝟏 (𝟏− 𝒓 𝒏 ) 𝟏−𝒓
296
𝑷𝒂𝒔𝒄𝒂 𝒍 ′ 𝒔 𝑻𝒓𝒊𝒂𝒏𝒈𝒍𝒆
297
1 1 2 1
298
𝑩𝒊𝒏𝒐𝒎𝒊𝒂𝒍 𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕 𝒏 𝒓
299
Combination of "n" things chosen "r" at a time
300
𝑩𝒊𝒏𝒐𝒎𝒊𝒂𝒍 𝑻𝒉𝒆𝒐𝒓𝒆𝒎 (𝒂+𝒃) 𝒏
301
𝒏 𝟎 𝒂 𝒏 + 𝒏 𝟏 𝒂 𝒏−𝟏 𝒃 𝟏 + 𝒏 𝟐 𝒂 𝒏−𝟐 𝒃 𝟐 +…+ 𝒏 𝒏 𝒃 𝒏
302
Polars
303
𝑻𝒐 𝒄𝒐𝒏𝒗𝒆𝒓𝒕 𝒇𝒓𝒐𝒎 𝒓𝒆𝒄𝒕𝒂𝒏𝒈𝒖𝒍𝒂𝒓 𝒕𝒐 𝒑𝒐𝒍𝒂𝒓 (𝟑 𝒘𝒂𝒚𝒔)
304
𝟏) 𝒙=𝒓∗𝒄𝒐𝒔𝜽 𝟐) 𝒚=𝒓∗𝒔𝒊𝒏𝜽 𝟑) 𝒙 𝟐 + 𝒚 𝟐 = 𝒓 𝟐
305
𝑰𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒕 𝒄𝒉𝒂𝒓𝒂𝒄𝒕𝒆𝒓𝒊𝒔𝒕𝒊𝒄𝒔
𝒐𝒇 𝒑𝒐𝒊𝒏𝒕𝒔 𝒊𝒏 𝒑𝒐𝒍𝒂𝒓 𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔
306
𝑬𝒂𝒄𝒉 𝒐𝒓𝒅𝒆𝒓𝒆𝒅 𝒑𝒂𝒊𝒓 𝒊𝒔 𝒏𝒐𝒕 𝒖𝒏𝒊𝒒𝒖𝒆
307
𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?
308
𝒍𝒊𝒎𝒂𝒄𝒐𝒏 𝒘𝒊𝒕𝒉 𝒊𝒏𝒏𝒆𝒓 𝒍𝒐𝒐𝒑
309
𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?
310
𝒄𝒂𝒓𝒅𝒊𝒐𝒊𝒅
311
𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?
312
𝒍𝒊𝒎𝒂𝒄𝒐𝒏 𝒘𝒊𝒕𝒉 𝒅𝒆𝒏𝒕/𝒅𝒊𝒎𝒑𝒍𝒆
313
𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?
314
𝒄𝒐𝒏𝒗𝒆𝒙 𝒍𝒊𝒎𝒂𝒄𝒐𝒏
315
𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?
316
𝒔𝒑𝒊𝒓𝒂𝒍
317
𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?
318
𝒑𝒆𝒕𝒂𝒍 𝒄𝒖𝒓𝒗𝒆
319
𝒏𝒂𝒎𝒆 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉?
320
𝒍𝒆𝒎𝒏𝒊𝒔𝒄𝒂𝒕𝒆
321
𝒓= 𝒄 𝒄𝒐𝒔𝜽
322
𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒍𝒊𝒏𝒆
323
𝒓= 𝒄 𝒔𝒊𝒏𝜽
324
𝒉𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝒍𝒊𝒏𝒆
325
𝜽=𝒄
326
𝒂 𝒍𝒊𝒏𝒆 𝒕𝒉𝒂𝒕 𝒎𝒂𝒌𝒆𝒔 𝒂𝒏 𝒂𝒏𝒈𝒍𝒆
𝒐𝒇 𝒄 𝒓𝒂𝒅𝒊𝒂𝒏𝒔 𝒘𝒊𝒕𝒉 𝒕𝒉𝒆 𝒑𝒐𝒍𝒂𝒓 𝒂𝒙𝒊𝒔
327
𝒓=𝒄
328
𝒂 𝒄𝒊𝒓𝒄𝒍𝒆 𝒘𝒊𝒕𝒉 𝒄𝒆𝒏𝒕𝒆𝒓 (𝟎,𝟎) 𝒓𝒂𝒅𝒊𝒖𝒔=𝒄
329
𝒓=𝟐𝒂𝒄𝒐𝒔𝜽+𝟐𝒃𝒔𝒊𝒏𝜽
330
𝒄𝒊𝒓𝒄𝒍𝒆 𝒘𝒊𝒕𝒉 𝒄𝒆𝒏𝒕𝒆𝒓 𝒂,𝒃 𝒓𝒂𝒅𝒊𝒖𝒔= 𝒂 𝟐 + 𝒃 𝟐
331
𝒓=𝜽
332
𝒔𝒑𝒊𝒓𝒂𝒍
333
𝒓=𝒂±𝒃𝒔𝒊𝒏𝜽 𝒓=𝒂±𝒃𝒄𝒐𝒔𝜽
334
𝒍𝒊𝒎𝒂𝒄𝒐𝒏/𝒄𝒂𝒓𝒅𝒊𝒐𝒅
335
𝒓=𝒂+𝒃𝒔𝒊𝒏𝜽 𝒑𝒐𝒊𝒏𝒕𝒔?
336
𝑷𝒐𝒊𝒏𝒕𝒔 𝒖𝒑
337
𝒓=𝒂−𝒃𝒔𝒊𝒏𝜽 𝒑𝒐𝒊𝒏𝒕𝒔?
338
𝑷𝒐𝒊𝒏𝒕𝒔 𝒅𝒐𝒘𝒏
339
𝒓=𝒂+𝒃𝒄𝒐𝒔𝜽 𝒑𝒐𝒊𝒏𝒕𝒔?
340
𝑷𝒐𝒊𝒏𝒕𝒔 𝒓𝒊𝒈𝒉𝒕
341
𝒓=𝒂−𝒃𝒄𝒐𝒔𝜽 𝒑𝒐𝒊𝒏𝒕𝒔?
342
𝑷𝒐𝒊𝒏𝒕𝒔 𝒍𝒆𝒇𝒕
343
𝒓=𝒂±𝒃𝒔𝒊𝒏𝜽 𝒓=𝒂±𝒃𝒄𝒐𝒔𝜽 𝟎< 𝒂 𝒃 <𝟏
344
𝒍𝒊𝒎𝒂𝒄𝒐𝒏 𝒘𝒊𝒕𝒉 𝒂 𝒍𝒐𝒐𝒑
345
𝒓=𝒂±𝒃𝒔𝒊𝒏𝜽 𝒓=𝒂±𝒃𝒄𝒐𝒔𝜽 𝒂 𝒃 =𝟏
346
𝒄𝒂𝒓𝒅𝒊𝒐𝒊𝒅
347
𝒓=𝒂±𝒃𝒔𝒊𝒏𝜽 𝒓=𝒂±𝒃𝒄𝒐𝒔𝜽 𝟏< 𝒂 𝒃 <𝟐
348
𝒍𝒊𝒎𝒂𝒄𝒐𝒏 𝒘𝒊𝒕𝒉 𝒂 𝒅𝒆𝒏𝒕/𝒅𝒊𝒎𝒑𝒍𝒆
349
𝒓=𝒂±𝒃𝒔𝒊𝒏𝜽 𝒓=𝒂±𝒃𝒄𝒐𝒔𝜽 𝒂 𝒃 >𝟐
350
𝒄𝒐𝒏𝒗𝒆𝒙 𝒍𝒊𝒎𝒂𝒄𝒐𝒏
351
𝒆𝒙𝒕𝒓𝒆𝒎𝒆 𝒗𝒂𝒍𝒖𝒆𝒔 𝒐𝒇 𝒂 𝒍𝒊𝒎𝒂𝒄𝒐𝒏/𝒄𝒂𝒓𝒅𝒊𝒐𝒊𝒅
352
𝒂 + 𝒃 𝒃 − 𝒂
353
𝒓=𝒂𝒄𝒐𝒔(𝒏𝜽) 𝒏 𝒊𝒔 𝒐𝒅𝒅
354
𝒑𝒆𝒕𝒂𝒍 𝒄𝒖𝒓𝒗𝒆 𝒘𝒊𝒕𝒉 𝒏 𝒑𝒆𝒕𝒂𝒍𝒔
355
𝒓=𝒂𝒔𝒊𝒏(𝒏𝜽) 𝒏 𝒊𝒔 𝒐𝒅𝒅
356
𝒑𝒆𝒕𝒂𝒍 𝒄𝒖𝒓𝒗𝒆 𝒘𝒊𝒕𝒉 𝒏 𝒑𝒆𝒕𝒂𝒍𝒔
357
𝒓=𝒂𝒄𝒐𝒔(𝒏𝜽) 𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏
358
𝒑𝒆𝒕𝒂𝒍 𝒄𝒖𝒓𝒗𝒆 𝒘𝒊𝒕𝒉 𝟐𝒏 𝒑𝒆𝒕𝒂𝒍𝒔
359
𝒓=𝒂𝒔𝒊𝒏(𝒏𝜽) 𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏
360
𝒑𝒆𝒕𝒂𝒍 𝒄𝒖𝒓𝒗𝒆 𝒘𝒊𝒕𝒉 𝟐𝒏 𝒑𝒆𝒕𝒂𝒍𝒔
361
𝒓=𝒂𝒔𝒊𝒏 𝒏𝜽 𝒓=𝒂𝒄𝒐𝒔(𝒏𝜽) 𝒂=?
362
𝒍𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒆𝒂𝒄𝒉 𝒑𝒆𝒕𝒂𝒍
363
𝒓 𝟐 =𝒂𝒄𝒐𝒔(𝟐𝜽) 𝒓 𝟐 =𝒂𝒔𝒊𝒏(𝟐𝜽)
364
𝒍𝒆𝒎𝒏𝒊𝒔𝒄𝒂𝒕𝒆
365
𝒓 𝟐 =𝒂𝒄𝒐𝒔(𝟐𝜽) 𝒓 𝟐 =𝒂𝒔𝒊𝒏 𝟐𝜽 𝒂= ?
366
𝒂 =𝒍𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒆𝒂𝒄𝒉 𝒑𝒆𝒕𝒂𝒍
367
Vectors
368
𝑴𝒂𝒈𝒏𝒊𝒕𝒖𝒅𝒆 𝒐𝒇 𝒂 𝒗𝒆𝒄𝒕𝒐𝒓< 𝒂 𝟏 , 𝒂 𝟐 >
𝑨 =
369
= ( 𝒂 𝟏 ) 𝟐 + ( 𝒂 𝟐 ) 𝟐
370
𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 𝒂𝒏𝒈𝒍𝒆 𝒐𝒇 𝒂 𝒗𝒆𝒄𝒕𝒐𝒓< 𝒂 𝟏 , 𝒂 𝟐 >
𝜽=
371
𝒕𝒂𝒏𝜽= 𝒂 𝟐 𝒂 𝟏
372
𝑻𝒉𝒆 𝒔𝒖𝒎 𝒐𝒇 𝒕𝒘𝒐 𝒗𝒆𝒄𝒕𝒐𝒓𝒔 𝒊𝒔…
373
𝑻𝒉𝒆 𝒔𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔
374
𝑻𝒉𝒆 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒐𝒇 𝒕𝒘𝒐 𝒗𝒆𝒄𝒕𝒐𝒓𝒔 𝒊𝒔…
375
𝑻𝒉𝒆 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔
376
𝑺𝒄𝒂𝒍𝒂𝒓 𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏
𝒊𝒇 𝒄 𝒊𝒔 𝒂 𝒔𝒄𝒂𝒍𝒂𝒓 𝒂𝒏𝒅 𝑨 𝒊𝒔 𝒕𝒉𝒆 𝒗𝒆𝒄𝒕𝒐𝒓< 𝒂 𝟏 , 𝒂 𝟐 > 𝒕𝒉𝒆𝒏 𝒄∗𝑨=
377
< 𝒄∗𝒂 𝟏 , 𝒄∗ 𝒂 𝟐 >
378
𝒊
379
<𝟏, 𝟎>
380
𝒋
381
<𝟎, 𝟏>
382
𝒊𝒏 𝒕𝒆𝒓𝒎𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒖𝒏𝒊𝒕 𝒗𝒆𝒄𝒕𝒐𝒓𝒔
<𝒂,𝒃> 𝒊𝒏 𝒕𝒆𝒓𝒎𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒖𝒏𝒊𝒕 𝒗𝒆𝒄𝒕𝒐𝒓𝒔
383
𝒂𝒊+𝒃𝒋
384
𝑨< 𝒂 𝟏 , 𝒂 𝟐 >, 𝑩< 𝒃 𝟏 , 𝒃 𝟐 >
𝑽𝒆𝒄𝒕𝒐𝒓 𝑨𝑩 𝒊𝒏 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝑨< 𝒂 𝟏 , 𝒂 𝟐 >, 𝑩< 𝒃 𝟏 , 𝒃 𝟐 >
385
< 𝒃 𝟏 − 𝒂 𝟏 , 𝒃 𝟐 − 𝒂 𝟐 >
386
𝑼𝒏𝒊𝒕 𝒗𝒆𝒄𝒕𝒐𝒓 𝒊𝒏 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒗
𝒆 𝒗 𝑼𝒏𝒊𝒕 𝒗𝒆𝒄𝒕𝒐𝒓 𝒊𝒏 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒗
387
𝒗 𝟏 𝒗 , 𝒗 𝟐 𝒗
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.