Download presentation
Presentation is loading. Please wait.
Published byThierry Lefèvre Modified over 6 years ago
1
Diboson Production Studies with Full Simulation Data Sets
T. Dai, A. Wilson, B. Zhou, Z. Zhao University of Michigan, USA Ma Hong Brookhaven National Laboratory, USA April 27, 2006 North America SM and Higgs ATLAS Workshop 4/16/2006 Zhengguo Zhao
2
Outline Introduction MC Data Samples Events Selection and Results
Plans and Summary 4/16/2006 Zhengguo Zhao
3
Diboson Production at Hadron Collider
V1 V2 V3 V1, V2, V3 = Z, W, g Diboson can be produced so long as the quantum numbers of the vertex conserves e.g. WW, ZW, ZZ, Wg, Zg SM: Only WWg, WWZ couplings are allowed Pure neutral vertexes are forbidden (Z/g carry no charge and weak isospin that needed for gauge bosons couple) Diboson production cross section predicable (NLO). 4/16/2006 Zhengguo Zhao
4
Diboson Physics-Motivations
● Explore none-Abelian SU(2)xU(1) gauge structure of SM and test of Triple Gauge Couplings (TGCs) ● Backgrounds of many important physics analyses: Search for Higgs, SUSY, graviton and study of ttbar ● Probe new physics if TGCs(exp) deviate from the SM prediction Tevatron 4/16/2006 Zhengguo Zhao
5
Diboson as Background of New Physics
ZZ H 4/16/2006 Zhengguo Zhao
6
Triple Gauge Boson Couplings
Characterized by an effective Lagrangian, parameterized in terms of coupling parameters for new physics Two overall parameters gWWg = -e, gWWZ = -cotθ Seven parameters for WWZ and WWg each C, P and CP symmetry conservation free parameters are: lg, kg, lZ, kZ , g1Z Tree level SM g1Z = kV = 1, lV =0 (V=Z, g) 4/16/2006 Zhengguo Zhao
7
Anomalous Coupling Cross section increase for coupling with non-SM values, yielding large cross section at high energies that violating tree level unitarity - form factor scale s: subprocess CM energy L: form factor scale s (for WW) s (for ZW) LHC/ATLAS: Mush higher CM energy-larger s High luminosity - high statistics High sensitivity 4/16/2006 Zhengguo Zhao
8
MC Data for Diboson Studies
Signal: (V2.3) Background: Pythia 6.2 Simulation-digitization: 9.0.4 Reconstruction: (2,4) Data produced in ATLAS GRID, and Michigan ATLAS computer cluster Process MC data ZW+ 2e/2m + X 26033 ttbar l+x 1.96×105 ZW- 2e/2m + X 29085 ee/mm/ tt 2.30×106 ZZ 4e, 4m, 2e2m 19933 W e/m/t + n 1.61×106 WW ln + x 32056 W+jets ln + x 1.59×106 ZZ(pythia) 4l (e,m) 4.66×104 Z+jet ee/mm/tt 5.80×106 Zbb 4l 4.99×104 DY Z/g l+ l- (e, m, t) 1.67×107 Zg ll (e,m) 2.50×104 Significantly increased background statistics, e.g. for Z+jet, W+jet, DY, W+jet and Wlepton to the level of 106 or more. Rome Di-boson signal events produced by (v2.3) - W and Z width effect is not included. 4/16/2006 Zhengguo Zhao
9
WZ q W q’ Z Sensitive to WWZ vertex (SM) = 57.7 pb at 14 TeV
– Allows study of WWZ coupling parameters with no assumptions about WWg couplings (SM) = 57.7 pb at 14 TeV ZW→ l+l- lν mode is clean and unambiguous ZW→ jj lν mode has larger branching fraction, but difficult to distinguish ZW from W+jets, WW 4/16/2006 Zhengguo Zhao
10
ZW Events Selection (eeen, eemn, emmn, mmmn)
3 leptons with high pt and high missing Et, 2 leptons have opposite charge and the same flavor, invariance mass within mZ window Njet(Et>30 GeV)<2, Cuts to jet Et vector/scale sum Pre-selctction: pt (l1) > 6 and pt(l2,3) > 20 GeV R(l+l-) > 0.2 Etmiss > 25 GeV Vector ∑Et(jet) < 100 GeV Scalar ∑Et(jet) < 200 GeV ZWselection 40 < MT(W) < 120 GeV MET > 25 GeV |M(+-) – MZ| < 12 GeV |M(e+e-) – MZ| < 9 GeV q q’ W Z l+ l- l 4/16/2006 Zhengguo Zhao
11
Signal scaled 4/16/2006 Zhengguo Zhao
12
4/16/2006 Zhengguo Zhao
13
4/16/2006 Zhengguo Zhao
14
ZW Signal and Backgrounds (for 1 fb-1 data)
Neee Neem Nmme Nmmm Ntotal(1fb-1) Ns 16.9 17.1 21.9 19.8 75.7 Nb 1.71 0.88 1.73 2.00 6.32 S/B 9.84 19.4 12.7 9.92 12.0 S/B 12.9 18.2 16.7 14.0 30.1 47.4% 42.9% 7.7% 2.1% 4/16/2006 Zhengguo Zhao
15
WW Sensitive to WWZ and WWg Clean signal een, mmn, emn, but l
low branching fraction Two isolated high Pt leptons with opposite charge Large missing Et l Pt(l1) > 20 GeV and Pt(l2) > 25 GeV, (l1l2) < 2.8, R(l+l-) > 0.2 Et(Miss) > 30, 35, 40 GeV for een, emn and mmn Mee & Mmm>50 GeV, (Veto Z) Mem>30 GeV Njet(Et>30 GeV) ≤1 and Vector∑Et(jet)<60 GeV, Scalar∑Et(jet)<45 GeV Mtmin =min(Mtl1,Mtl2)>20 GeV, Mt(WW) < 500 GeV, Pt(l+l-)>30 GeV 4/16/2006 Zhengguo Zhao
16
tt WW cut ZZ Pt(l+l-) Vector∑Et(jet) Reject low Reject jet activities
Zg Zjet cut Reject jet activities Reject low Pt fake events Pt(l+l-) Vector∑Et(jet) 4/16/2006 Zhengguo Zhao
17
WW Signal and Backgrounds (for 1 fb-1 data)
Process Nee Nmm Nem Ntotal WWl+X (l=e,m) 36.73 37.58 284.41 358.71 ZW+2l+X (l=e, m) 0.759 1.422 5.499 7.679 ZW- 2l+X (l=e, m) 0.194 0.679 3.831 4.704 ZZ 4e, 4m, 2e2m 0.0043 0.0255 0.0298 Z+jet 2l+X(l=e, m, t) 68.67 42.90 27.46 139.04 DY l+l-(l=e, m, t) 103.47 55.14 12.57 171.18 Z+g 2l+g (l=e, m) 1.20 0.60 3.00 W+jets l+X(l=e,m,t) 3.03 1.28 4.31 ttbar l+X 11.32 7.54 30.17 Total background 188.6 112.1 59.41 360.1 S/B 0.19 0.34 4.79 1.00 S/B 2.67 3.55 36.90 18.90 4/16/2006 Zhengguo Zhao
18
Background Contributions to WW
47.3% 38.4% 8.3% 3.4% 2.6% 4/16/2006 Zhengguo Zhao
19
ZZ l1+ l1- l2+ l2- 4 high Pt isolated leptons (l=e, m)
- Pt(l1 or l2) > 25 GeV - R(l+l-) > 0.2 2 have the same flavor and their invariant mass satisfy |m(l+l-) – mZ| < 12 GeV 4/16/2006 Zhengguo Zhao
20
Invariant Mass and Pt Distributions for ZZ
m(e+e-) m(m+m-) PT(Z) MZZ 13 events for 1 fb-1 Background free with current statistics 4/16/2006 Zhengguo Zhao
21
Progress after Rome Meeting
Significantly increased background statistics More background channels have been included Optimized events selections, and significantly improved S/B ATLAS note based on Rome data-sets and high statistic background events has been prepared BHO MC for TGC studies interfaced to Pythia 6.205 Validate (v3.1) diboson generator for DC3. Major improvement: - W-width included in WW production - Spin-correlation included. But the Z-width has not been included for ZW and ZZ. 4/16/2006 Zhengguo Zhao
22
Plans Analysis with DC3 data using MC@NLO new version(3.1).
Prepare for the measurements of the ZW, WW, ZZ production cross sections with 100 – 500 pb-1 data. Study the systematic errors Apply advanced techniques to increase the S/B: boosted decision tree, artificial neuronal net work, matrix method. Establish the tools to determine the TGCs. We will start from the existing techniques using BHO MC (from Matt Dobbs) 4/16/2006 Zhengguo Zhao
23
How To Find SM BGK Data Sets used in this analysis?
Contact persons: Tiesheng Dai, Hong Ma, 4/16/2006 Zhengguo Zhao
24
Backup Slides 4/16/2006 Zhengguo Zhao
25
Summary Post Rome background: statistics increased 5-10 times; add more channels tremendous effort. ZW and WW events selection has been significantly improved much better S/B. Even with 100 pb-1 early ATLAS data, diboson cross section measurements and the determination of TGCs will be guaranteed early physics. To improve the TGC’s with ATLAS data, it’s crucial to build the TGCs into event generator need joint effort and experts 4/16/2006 Zhengguo Zhao
26
Signal and Background of All
Four Channels Process Neee Neem Nmme Nmmm Nobs Nobs/NMC Ntotal (1fb-1) ZW+ 2e/2m+X 107 110 140 132 489 0.0188 46.4 ZW- 2e/2m+X 139 138 178 150 605 0.0208 29.3 Signal total 246 248 318 282 1094 75.7 ZZ 4e/4m/2e2m 149 186 158 209 702 0.0352 2.99 Z+jet 2e/2m/2t 2 1 3 8 1.41×10-6 3.34 DYl+l-(l=e, m, t) 7.03×10-7 0.42 Zg 2e/2m 1.50×10-5 0.74 Background total 153 187 163 211 714 7.5 4/16/2006 Zhengguo Zhao
27
WW Signal and Background for MC Sample
Process Nee Nmm Nem Nobs Nobs/NMC WWl+X (l=e,m) 43 44 333 420 1.31×10-2 ZW+2(l)+X (l=e, m) 8 15 58 81 3.11×10-3 ZW-2(l)+X (l=e, m) 4 14 79 97 3.33×10-3 ZZ4e, 4m, 2e2m 1 6 7 3.51×10-4 Z+jet2(l)+X(l=e, m, t) 200 105 84 389 2.40×10-5 DYl+l+(l=e, m, t) 151 100 2 253 1.62×10-4 Z+g2(l)+g (l=e, m) 5 3.34×10-5 W+jetsl+X(l=e,m,t) 1.26×10-6 ttbarl+X 3 7.23×10-5 4/16/2006 Zhengguo Zhao
28
Ns/Nb(ZW) Ns/Nb(WW) Ns(ZW) Nb(ZW) Ns(WW) Nb(WW) 4/16/2006
Zhengguo Zhao
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.