Presentation is loading. Please wait.

Presentation is loading. Please wait.

Gravitational-wave Detection with Interferometers

Similar presentations


Presentation on theme: "Gravitational-wave Detection with Interferometers"— Presentation transcript:

1 Gravitational-wave Detection with Interferometers
LIGO, LISA, and the like Nergis Mavalvala MIT September 18, 2002

2 Interferometric Detectors Worldwide
TAMA LIGO LISA LIGO VIRGO GEO

3 Global network of detectors
GEO VIRGO LIGO TAMA AIGO LIGO LISA

4 Science goals: detection of gravitational waves
Tests of general relativity Waves  direct evidence for time-dependent metric Black hole signatures  test of strong field gravity Polarization of the waves  spin of graviton Propagation velocity  mass of graviton Astrophysical processes Inner dynamics of processes hidden from EM astronomy Cores of supernovae Dynamics of neutron stars  large scale nuclear matter The earliest moments of the Big Bang  Planck epoch Astrophysics…

5 Astrophysical sources of GWs
Coalescing compact binaries Classes of objects: NS-NS, NS-BH, BH-BH Physics regimes: Inspiral, merger, ringdown Other periodic sources Spinning neutron stars  numerically hard problem Burst events Supernovae  asymmetric collapse Stochastic background Primordial Big Bang (t = sec) Continuum of sources The Unexpected Coalescing compact binaries  chirp sources NS-NS  far away; long periods; final inspiral gives GW chirp NS-BH  tidal disruption of NS by BH; merger  GRB triggers Inspiral  accurate predition with PPN proportional to (v/c)^11 Merger  nonlinear dynamics of highly curved spacetime Ringdown  ringdown of modes of coalesced object Periodic sources Spinning NS  axisymmetry unknown Galactic pulsars in SN remnant gases  non-axisymmetry unknown LMXBs  mass accretion from companion Is accretion spin-up balanced by GW spin-down? Issues  axisymmetric distortion from radiation reaction force Supernovae Collapse  Dynamics not understood. If instability makes star into tumblong bar, then GWs Core convection  detect via correlations with neutrinos GWs neutrinos photons now

6 Gravitational Waves General relativity predicts transverse space-time distortions propagating at the speed of light In TT gauge and weak field approximation, Einstein field equations  wave equation Conservation laws Conservation of energy  no monopole radiation Conservation of momentum  no dipole radiation Lowest moment of field  quadrupole (spin 2) Radiated by aspherical astrophysical objects Radiated by “dark” mass distributions  black holes, dark matter

7 Astrophysics with GWs vs. E&M
Very different information, mostly mutually exclusive Difficult to predict GW sources based on E&M observations E&M GW Space as medium for field Spacetime itself Accelerating charge  incoherent superpositions of atoms, molecules Accelerating aspherical mass  coherent motions of huge masses Wavelength small compared to sources  images Wavelength large compared to sources  no spatial resolution Absorbed, scattered, dispersed by matter Very small interaction; matter is transparent 10 MHz and up 10 kHz and down Detectors have small solid angle acceptance Detectors have large solid angle acceptance

8 Gravitational waves and GR
From special relativity, “flat” space-time interval is From general relativity, curved space-time can be treated as perturbation of flat space-time where , In the transverse traceless gauge Einstein’s equation  gives wave equation

9 Gravitational waves and GR
Time-dependent solution  Two polarizations Interaction with matter

10 Strength of GWs: e.g. Neutron Star Binary
Gravitational wave amplitude (strain) For a binary neutron star pair M R Quadrupole formalism is accurate to order of magnitude for most sources. Involves computing wave generation and radiation reaction from Einstein eqn. Weak internal gravity and stresses  nearly Newtonian source Kepler’s third law of planetary motion: period^2 = 4*pi^2*radius^3/(G*Msun) Distances  1 parsec = 3.26 l.y. = 3e18 cm r ~ 10^23 m ~ 10 Mpc (center of Virgo cluster) Distance of earth to center of galaxy ~ l.y. ~ 10 kpc h ~10-21 r

11 GWs meet Interferometers
Laser interferometer Suspend mirrors on pendulums  “free” mass Optimal antenna length a L ~ l/4 ~ 105 meter DL = h L Delta_L = h * L 10^-16 m = 10^-21 * 10^5 m

12 Practical Interferometer
For more practical lengths (L ~ 1 km) a “fold” interferometer to increase phase sensitivity Df = 2 k DL  N (2 k DL); N ~ 100 N a number of times the photons hit the mirror Light storage devices a optical cavities Dark fringe operation a lower shot noise GW sensitivity  P a increase power on beamsplitter Power recycling Most of the light is reflected back toward the laser  “recycle” light back into interferometer Price to pay: multiple resonant cavities whose lengths must be controlled to ~ 10-8 l Arm cavity  increase strain-to-phase conversion (phi = N * dL) Power recycling  improves shot noise limited phase sensitivity

13 Power-recycled Interferometer
Optical resonance: requires test masses to be held in position to meter “Locking the interferometer” end test mass Light bounces back and forth along arms ~100 times  30 kW Light is “recycled” ~50 times  300 W input test mass Laser + optical field conditioning 6W single mode signal

14 LIGO WA 3 k m ( 1 s ) 4 km 2 km LA 4 km

15 Initial LIGO Sensitivity Goal
Strain sensitivity < 3x /Hz1/2 at 200 Hz Displacement Noise Seismic motion Thermal Noise Radiation Pressure Sensing Noise Photon Shot Noise Residual Gas Facilities limits much lower

16 Limiting Noise Sources: Seismic Noise
Motion of the earth few mm rms at low frequencies Passive seismic isolation ‘stacks’ amplify at mechanical resonances but get f-2 isolation per stage above 10 Hz

17 Limiting Noise Sources: Thermal Noise
Suspended mirror in equilibrium with 293 K heat bath a kBT of energy per mode Fluctuation-dissipation theorem: Dissipative system will experience thermally driven fluctuations of its mechanical modes: Z(f) is impedance (loss) Low mechanical loss (high Quality factor) Suspension  no bends or ‘kinks’ in pendulum wire Test mass  no material defects in fused silica FRICTION

18 Limiting Noise Sources: Quantum Noise
Shot Noise Uncertainty in number of photons detected a Higher input power Pbs a need low optical losses (Tunable) interferometer response  Tifo depends on light storage time of GW signal in the interferometer Radiation Pressure Noise Photons impart momentum to cavity mirrors Fluctuations in the number of photons a Lower input power, Pbs  Optimal input power for a chosen (fixed) Tifo Shot noise: Laser light is Poisson distributed  sigma_N = sqrt(N) dE dt >= hbar  d(N hbar omega) >= hbar  dN dphi >= 1 Radiation Pressure noise: Pressure fluctuations are anti-correlated between cavities

19

20 Displacement Sensitivity (Science Run 1, Sept. 2002)

21 The next-generation detector Advanced LIGO (aka LIGO II)
Now being designed by the LIGO Scientific Collaboration Goal: Quantum-noise-limited interferometer Factor of ten increase in sensitivity Factor of 1000 in event rate. One day > entire 2-year initial data run Schedule: Begin installation: 2006 Begin data run: 2008

22 A Quantum Limited Interferometer
Facility limits Gravity gradients Residual gas (scattered light) Advanced LIGO Seismic noise 4010 Hz Thermal noise 1/15 Optical noise 1/10 Beyond Adv LIGO Thermal noise: cooling of test masses Quantum noise: quantum non-demolition LIGO I LIGO II Seismic Suspension thermal Test mass thermal Quantum

23 Optimizing the optical response: Signal Tuning
Power Recycling Signal r(l).e i f (l) l Cavity forms compound output coupler with complex reflectivity. Peak response tuned by changing position of SRM Reflects GW photons back into interferometer to accrue more phase

24 Advance LIGO Sensitivity: Improved and Tunable
Thorne… SQL  Heisenberg microscope analog If photon measures TM’s position too well, it’s own angular momentum will become uncertain.

25 Implications for source detection
NS-NS Inpiral Optimized detector response NS-BH Merger NS can be tidally disrupted by BH Frequency of onset of tidal disruption depends on its radius and equation of state a broadband detector BH-BH binaries Merger phase  non-linear dynamics of highly curved space time a broadband detector Supernovae Stellar core collapse  neutron star birth If NS born with slow spin period (< 10 msec) hydrodynamic instabilities a GWs ~10 min ~3 sec 20 Mpc 300 Mpc

26 Source detection Spinning neutron stars Stochastic background
Galactic pulsars: non-axisymmetry uncertain Low mass X-ray binaries: If accretion spin-up balanced by GW spin- down, then X-ray luminosity  GW strength Does accretion induce non-axisymmetry? Stochastic background Can cross-correlate detectors (but antenna separation between WA, LA, Europe a dead band) W(f ~ 100 Hz) = 3 x 10-9 (standard inflation  10-15) (primordial nucleosynthesis d 10-5) (exotic string theories  10-5) Signal strengths for 20 days of integration Sco X-1 Thorne GW energy / closure energy

27 Detection of candidate sources
Thorne

28 New Instrument, New Field, the Unexpected…


Download ppt "Gravitational-wave Detection with Interferometers"

Similar presentations


Ads by Google