Download presentation
Presentation is loading. Please wait.
1
DYNAMIC FORCE ANALYSIS
WEEKS-2,3
2
MASS RELATIONS Location of Center of Mass: y m1 m2 G G G x O x1 x2 xn
mn O z R x y m m mn x O x1 G x2 xn R1 G R2 Rn x dm G
3
MASS RELATIONS Mass Moments and Products of Inertia:
Mass Moments of Inertia Mass Products of Inertia Inertia Tensor If there is symmetry wrt three axes: Ixy= Ixz= Iyz=0 (In this case, Ixx, Iyy, Izz are principal moments of inertia) If there is symmetry wrt two axes: Two of Ixy, Ixz, Iyz=0 If there is symmetry wrt one axis : One of Ixy, Ixz, Iyz=0 Unit: massXdistance2
4
Inertia Forces and D’alembert’s Principle
aG h aG F G G FG MG F2 Newton’s Law: F=maG (F=FG ) MG=Fh=IG (h=IG/maG) h is selected according to the sense of
5
(F=FG ) MG D’alembert’s Principle:
Fa F FGa h aG aG G G FG (F=FG ) TGa MG D’alembert’s Principle: F- maG = 0 F+ FGa = 0 F= (Inertia Force: Fa = FGa = - maG ) (A fictitious force) MG-IG = 0 MG+TGa =0 M=0 (Inertia Torque: TGa = - IG ) (A fictitious torque)
6
EXAMPLE (Analytical Solution)
G3 A G2,O2 aG3 O4 aG4 FC C B G4 5,1° 18,7° 73° 127° 4 3 2 115° ω2 3 4 AO2=60 mm O4O2=100 mm BA=220 mm BO4= 150 mm CO4=CB=120 mm G3A= 90 mm G4O4=90 mm m3=1.5 kg m4=5 kg IG2=0.025 kg.m2 IG3=0.012 kg.m2 IG4=0.054 kg.m2 2=0 3=-119k r/s2 4=-625k r/s2 FC=-0.8j N aG3= 162 aG4= ° m/s2 -73.2 ° m/s2 G4O4C = 20.4° G4O4B = 36° G3AB = 30° G
7
FREE BODY DIAGRAMS FaG3=-m3aG3 TaG3=-IG33 4 unknowns G3 3 equations
G2,O2 F12 2 F32 M12 A F14 F34 FC C O4 G4 FaG4 =-m4aG4 TaG4=-IG44 5 unknowns 3 equations 4 unknowns 3 equations Total: 9 unkowns 9 equations A matrix solution can be performed in the computer. Practically, the most suitable way is to make a coupled solution of links 3 and 4, for F34 and F43 . Therefore, the solution is reduced to 2 equations with 2 unknowns.
8
MOMENT AT LINK 4 WRT POINT O4
F14 F34 FC C O4 G4 FaG4 =-m4aG4 TaG4=-IG44 MOMENT AT LINK 4 WRT POINT O4 ΣMO4=0 ΣMO4= O4G4 x FaG4 + TaG4 + O4C x FC + O4B x F34= 0 ΣMO4=0.09[cos( )i + sin25.5j] x 5(104)[cos( )i+sin 53j] + (0.054)(625k) 413°=53° +0.12(cos 5.1i + sin 5.1j) x (-800j) +0.15[cos( )i + sin61.5j] x(F34xi+F34y j)=0 -0.125F34x F34y = 37 (1)
9
MOMENT AT LINK 3 WRT POINT A
F23 F43 A B G3 FaG3=-m3aG3 TaG3=-IG33 3 MOMENT AT LINK 3 WRT POINT A ΣMA=0 ΣMA = AG3 x FaG3 + TaG3 + AB x F43 =0 ΣMA = 0.09[cos( )i +sin48.7j] x 1.5 (162) [cos( )i+sin(106.8)j] +(0.012)(119k) +0.22(cos18.7i+sin18.7j) x (-F34xi-F34yj)=0 0.0705F34x-0.208F34y=-20 (2)
10
Finding Forces F34 and F14 -0.125F34x + 0.083F34y = 37
FC C O4 G4 FaG4 =-m4aG4 TaG4=-IG44 Finding Forces F34 and F14 -0.125F34x F34y = 37 0.0705F34x-0.208F34y=-20 F34x= F34y=-5,39 F34=-300i-5.39j N Force Balance at Link 4 ΣF= F14+F34+FC+FaG4=0 F14-300i-5.39j-800j+5(104)(cos53i+sin53j)=0 F14=-13i+ 390j N
11
Finding Force F23 Force Balance at Link 3 ΣF=0 F23+F43+FaG3=0
F23+300i+5.39j+1.5(162)(cos106.8i+sin106.8j)=0 F23=-230i-238j N F23 F43 A B G3 FaG3=-m3aG3 TaG3=-IG33 3
12
Finding Force F12 and Moment M12
Force Balance at Link 2 ΣF= F12+F32=0 F12=-F32=F23=-230i-238j N Moment Balance at Link 2 ΣMO2= O2A x F32 + M12 + TaG2=0 0.06(cos115i+sin115j)x(230i+238j)+M12k+0=0 M12=18.6 N.m M12=18.6 k N.m G2,O2 F12 2 F32 M12 A
13
EXAMPLE (Graphical Solution)
F34O4B B F14 FC C O4 G4 FaG4 =-m4aG4 TaG4=-IG44 MO4=0 -(F34O4B)O4B-FC(O4C)x - (FG4)ax (O4G4)y +(FG4)ay (O4G4)x+(TG4)a =0 -(F34O4B)(0.15)- (800)(0.12 cos5.1)- (5)(104cos53)(0.09sin25.5)+ (5)(104sin53)(0.09cos25.5)+(0.054)(625)=0 (F34O4B)=-268.4 MA=0 -(F43AB)AB+ (FG3)ax (AG3)y +(FG3)ay (AG3)x+(TG3)a =0 -(F43AB)(0.22)+(1.5)(-162cos106.8)(0.09sin48.7)+ (1.5)(162sin106.8)(0.09cos48.7)+(0.012)(119)=0 (F43AB)= (F34AB)= 90.9 F23 F43 A B G3 FaG3=-m3aG3 TaG3=-IG33 3 F43AB
14
F34 Link 4: F=0 F34O4B F14 FC C O4 FaG4 =-m4aG4 TaG4=-IG44
!!! (F34O4B) is negative Force scale (hf ) : 1cm=100N Of Force scale (hf ) : 1cm=50N F14 F34AB 92 F34O4B F34 F34//O4B FC F34//AB 181 F34 (FG4)a F34= (6cm)(50 N/cm)=300 N F14= (3.9cm)(100 N/cm)=390 N F34= 300 /181 N F14= 390 /92 N
15
Link 3: F=0 Force scale (hf ) : 1cm=50N Link 2: F=0
G2,O2 F12 2 F32 M12 A F23 F43 A B G3 FaG3=-m3aG3 TaG3=-IG33 3 Link 3: F=0 Force scale (hf ) : 1cm=50N Link 2: F=0 F12=-F32= F23= 330 /226 N 226 F43 A F32 M12 FG3a F23 F12 h Of O2 MO2=0 M12 – F32 h =0 M12 =18.6 N.m M12 =18.6k N.m F23= (6.6cm)(50 N/cm)=330 N F23= 330 /226 N
16
Example y O2A=3 in. W2=18 lb BA=12 in. W3=3.5 lb
G2O2=1.25in. W4=2.5 lb G3A=3.5 in IG2= in.lb.s2 IG3=0.110in.lb.s2 B 4 FB O2 G4 30 2 2 3 G2 G3 A 2= 3=-3090k r/s FB= ° N aG2= ft/s2 aG3= ° ft/s2 aG4= ° ft/s2 O2A sin30 = BA sin =7.18 ° Problem will be solved by including gravity forces.
17
W4 aG4 B All forces pass through mass center G4 for the moment balance 4// G4 FB FG4a Sense is assumed F34 F14 W4 MA=0 AB x(FB+ F14+W4 +FG4a )+ + AG3X(W3+FG3a ) + TG3a =0 12(cos7.18i+sin7.18j)X[-800i+F14j-2.5j+ +(2.5/386)(6280)(12)i] + 3.5(cos7.18i+sin7.18j)X[-3.5j+ +(3.5/386)(6130)(12)(-cos158.3i-sin158.3j)]+ +(0.110)(3090)k=0 F14= j lb 3+4// FG4a FB B TG3a aG3 F14 G3 A FG3a W3 F23
18
3+4// F=0 F23+ FG3a + W3 +FB+F14 +W4 +FG4a=0
F23+(3.5/386)(6130)(12)(-cos158.3i-sin158.3j)]-3.5j-800i j-2.5j+ (2.5/386)(6280)(12)i=0 F23=-307.8i j lb 4// F=0 F34+FB+F14 +W4 +FG4a=0 F34-800i j-2.5j+(2.5/386)(6280)(12)i=0 F34=311.92i j lb F12 2// F=0 F32+F12+W2 +FG2a=0 307.8i j+F j+(0.95/386)(2640)(12)(-cos150i-sin150j)=0 F12= i j lb MO2=0 O2G2X FG2a+ O2G2X W2 +O2AX F32+M12=0 0+1.25(cos30i-sin30j)X(-0.95j)+3(cos30i-sin30j)X(307.8i j)+M12k =0 O2 G2 FG2a M12 F32 W2 A M12= k in.lb
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.