Presentation is loading. Please wait.

Presentation is loading. Please wait.

Performance of Centrifugal Pumps

Similar presentations


Presentation on theme: "Performance of Centrifugal Pumps"β€” Presentation transcript:

1 Performance of Centrifugal Pumps
9/24/2012 Performance of Centrifugal Pumps Fluid Machines: Positive displacement Energy transfer occurs as a result of the movement of the volume boundaries in which the fluid is enclosed in. Dynamic These are devices that use vanes or blades to direct the fluid. The fluid is not confined to a volume Positive Displacement Gear pump Dynamic ME 322 THERMO-FLUIDS LAB-1 11/17/2018 ME 383 Fluid Mechanics

2 Performance of Centrifugal Pumps
9/24/2012 Performance of Centrifugal Pumps Fluid Machines: Fluid machines can also be categorized according to the geometry of the fluid path into, Radial (centrifugal) Flow direction is mainly in the radial direction Axial Flow direction is mainly in the axial direction ME 322 THERMO-FLUIDS LAB-1 11/17/2018 ME 383 Fluid Mechanics

3 Performance of Centrifugal Pumps
9/24/2012 Performance of Centrifugal Pumps Fluid Machines: Turboprop Engine Axial Turbine Centrifugal Compressor Axial Compressor ME 322 THERMO-FLUIDS LAB-1 11/17/2018 ME 383 Fluid Mechanics

4 Performance of Centrifugal Pumps
9/24/2012 Performance of Centrifugal Pumps Fluid Machines: Theoretical principle: Angular Momentum Concept The angular momentum is defined as the moment of momentum 𝐻 = 𝒱 π‘Ÿ Γ— 𝑉 πœŒπ‘‘π’± The conservation of angular momentum applied to a CV πœ• πœ•π‘‘ 𝐢𝑉 π‘Ÿ Γ— 𝑉 πœŒπ‘‘π’± + 𝐢𝑆 π‘Ÿ Γ— 𝑉 𝜌 𝑉 βˆ™π‘‘ 𝐴 = 𝑇 π‘†β„Žπ‘Žπ‘“π‘‘ + π‘Ÿ Γ— 𝐹 𝑠 + 𝐢𝑉 π‘Ÿ Γ— 𝑔 π‘‘π‘š This is a general equation applied to any fluid machine. A much simpler equation can be obtained using few simplifying assumptions. ME 322 THERMO-FLUIDS LAB-1 11/17/2018 ME 383 Fluid Mechanics

5 Performance of Centrifugal Pumps
9/24/2012 Performance of Centrifugal Pumps Fluid Machines: Theoretical principle: Angular Momentum Concept πœ• πœ•π‘‘ 𝐢𝑉 π‘Ÿ Γ— 𝑉 πœŒπ‘‘π’± + 𝐢𝑆 π‘Ÿ Γ— 𝑉 𝜌 𝑉 βˆ™π‘‘ 𝐴 = 𝑇 π‘†β„Žπ‘Žπ‘“π‘‘ + π‘Ÿ Γ— 𝐹 𝑠 + 𝐢𝑉 π‘Ÿ Γ— 𝑔 π‘‘π‘š Assumptions; Steady flow Torque due to body forces and viscous forces are negligible Torque due to pressure changes is neglected We get 𝐢𝑆 π‘Ÿ Γ— 𝑉 𝜌 𝑉 βˆ™π‘‘ 𝐴 = 𝑇 π‘†β„Žπ‘Žπ‘“π‘‘ If we apply this equation to a CV enclosing the fluid machine and further assuming that the flow enters the machine at radius π‘Ÿ 1 and exits at π‘Ÿ 2 . ME 322 THERMO-FLUIDS LAB-1 11/17/2018 ME 383 Fluid Mechanics

6 Performance of Centrifugal Pumps
9/24/2012 Performance of Centrifugal Pumps Fluid Machines: 𝐢𝑆 π‘Ÿ Γ— 𝑉 𝜌 𝑉 βˆ™π‘‘ 𝐴 = 𝑇 π‘†β„Žπ‘Žπ‘“π‘‘ Flow is uniform at inlet and exit. Axe of rotation is in the z-direction. Applying the above assumptions we get, 𝑇 π‘†β„Žπ‘Žπ‘“π‘‘ = 𝑇 π‘ β„Žπ‘Žπ‘“π‘‘ π‘˜ = π‘Ÿ 2 𝑉 𝑑 2 βˆ’ π‘Ÿ 1 𝑉 𝑑 1 π‘š π‘˜ Hence, in scalar form 𝑇 π‘ β„Žπ‘Žπ‘“π‘‘ = π‘Ÿ 2 𝑉 𝑑 2 βˆ’ π‘Ÿ 1 𝑉 𝑑 1 π‘š This is called the , the Euler Turbomachine Equation And the rate of work done is given by, π‘Š = πœ” βˆ™ 𝑇 π‘†β„Žπ‘Žπ‘“π‘‘ π‘Š =πœ” 𝑇 π‘ β„Žπ‘Žπ‘“π‘‘ =πœ” π‘Ÿ 2 𝑉 𝑑 2 βˆ’ π‘Ÿ 1 𝑉 𝑑 1 π‘š OR π‘Š = πœ” π‘Ÿ 2 𝑉 𝑑 2 βˆ’πœ” π‘Ÿ 1 𝑉 𝑑 1 π‘š = π‘ˆ 2 𝑉 𝑑 2 βˆ’ π‘ˆ 1 𝑉 𝑑 1 π‘š ME 322 THERMO-FLUIDS LAB-1 11/17/2018 ME 383 Fluid Mechanics

7 Performance of Centrifugal Pumps
9/24/2012 Performance of Centrifugal Pumps Fluid Machines: π‘Š = πœ” π‘Ÿ 2 𝑉 𝑑 2 βˆ’πœ” π‘Ÿ 1 𝑉 𝑑 1 π‘š = π‘ˆ 2 𝑉 𝑑 2 βˆ’ π‘ˆ 1 𝑉 𝑑 1 π‘š If we divide by π‘š 𝑔 we get, 𝐻= π‘Š π‘š 𝑔 = 1 𝑔 π‘ˆ 2 𝑉 𝑑 2 βˆ’ π‘ˆ 1 𝑉 𝑑 1 This is defined as the theoretical pump head (rate of work done per rate of weight flow rate). For a centrifugal pump assuming the inlet flow is axial, 𝑉 𝑑 1 =0, then 𝐻= π‘ˆ 2 𝑉 𝑑 2 𝑔 How to evaluate 𝑉 𝑑 2 ? ME 322 THERMO-FLUIDS LAB-1 11/17/2018 ME 383 Fluid Mechanics

8 Performance of Centrifugal Pumps
9/24/2012 Performance of Centrifugal Pumps Fluid Machines: How to evaluate 𝑉 𝑑 2 ? 𝑉 𝑑 2 = π‘ˆ 2 βˆ’ π‘Š 2 cos 𝛽 2 = π‘ˆ 2 βˆ’ 𝑉 𝑛 2 sin 𝛽 2 cos 𝛽 2 = π‘ˆ 2 βˆ’ 𝑉 𝑛 2 cot 𝛽 2 𝐻= π‘ˆ 2 π‘ˆ 2 βˆ’ 𝑉 𝑛 2 cot 𝛽 2 𝑔 ME 322 THERMO-FLUIDS LAB-1 11/17/2018 ME 383 Fluid Mechanics

9 Performance of Centrifugal Pumps
9/24/2012 Performance of Centrifugal Pumps Fluid Machines: How to evaluate 𝑉 𝑑 2 ? 𝐻= π‘ˆ 2 π‘ˆ 2 βˆ’ 𝑉 𝑛 2 cot 𝛽 2 𝑔 For an impeller of width w, the volume flow rate is, 𝑄=πœ‹ 𝐷 2 𝑀 𝑉 𝑛 2 Hence, we can write the theoretical head as, 𝐻= π‘ˆ 2 2 𝑔 βˆ’ π‘ˆ 2 cot 𝛽 2 πœ‹ 𝐷 2 𝑀𝑔 𝑄 Then we can write in general, 𝐻= 𝐢 1 βˆ’ 𝐢 2 𝑄 Where 𝐢 1 and 𝐢 2 are functions of the machine geometry and speed. 𝐢 1 = π‘ˆ 2 2 𝑔 , 𝐢 2 = π‘ˆ 2 cot 𝛽 2 πœ‹ 𝐷 2 𝑀𝑔 ME 322 THERMO-FLUIDS LAB-1 11/17/2018 ME 383 Fluid Mechanics

10 Performance of Centrifugal Pumps
9/24/2012 Performance of Centrifugal Pumps Fluid Machines: ME 322 THERMO-FLUIDS LAB-1 11/17/2018 ME 383 Fluid Mechanics

11 Performance of Centrifugal Pumps
9/24/2012 Performance of Centrifugal Pumps Fluid Machines: How to compute real pump performance ? Use the energy equation 𝐻 𝑝 = 𝑝 πœŒπ‘” + 𝑉 2 2𝑔 +𝑧 𝑑 βˆ’ 𝑝 πœŒπ‘” + 𝑉 2 2𝑔 +𝑧 𝑠 Where the subscript d and s denote the discharge and suction sides, respectively. 𝐻 𝑝 = 𝑝 𝑑 βˆ’ 𝑝 𝑠 πœŒπ‘” 𝑉 𝑑 2 βˆ’ 𝑉 𝑠 2 2𝑔 + 𝑧 𝑑 βˆ’ 𝑧 𝑠 𝐻 𝑝 = 𝐻 π‘ π‘‘π‘Žπ‘‘π‘–π‘ + 𝐻 π‘˜π‘–π‘›π‘’π‘‘π‘–π‘ + 𝐻 π‘’π‘™π‘’π‘£π‘Žπ‘‘π‘–π‘œπ‘› In the current experiment, the total pressure head, 𝐻 𝑝 , is calculated by measuring 𝐻 π‘ π‘‘π‘Žπ‘‘π‘–π‘ , 𝐻 π‘˜π‘–π‘›π‘’π‘‘π‘–π‘ , 𝐻 π‘’π‘™π‘’π‘£π‘Žπ‘‘π‘–π‘œπ‘› at a constant speed. ME 322 THERMO-FLUIDS LAB-1 11/17/2018 ME 383 Fluid Mechanics

12 Performance of Centrifugal Pumps
9/24/2012 Performance of Centrifugal Pumps Fluid Machines: Similarity Rules For two different pumps to be dynamically similar, assuming geometric similarity, we must have the flow coefficient satisfy the equality, 𝑄 1 πœ” 1 𝐷 1 3 = 𝑄 2 πœ” 2 𝐷 2 3 The dimensionless head and power coefficients are functions of the flow coefficient, such that β„Ž πœ” 2 𝐷 2 = 𝑓 1 𝑄 πœ” 𝐷 3 π‘Žπ‘›π‘‘ 𝒫 𝜌 πœ” 3 𝐷 5 = 𝑓 2 𝑄 πœ” 𝐷 3 𝐻= β„Ž 𝑔 . Hence for similar flow coefficient we have, β„Ž 1 πœ” 1 2 𝐷 1 2 = β„Ž 2 πœ” 2 2 𝐷 2 2 And 𝒫 1 πœŒπœ” 1 3 𝐷 1 5 = 𝒫 2 𝜌 πœ” 2 3 𝐷 2 5 ME 322 THERMO-FLUIDS LAB-1 11/17/2018 ME 383 Fluid Mechanics


Download ppt "Performance of Centrifugal Pumps"

Similar presentations


Ads by Google