Presentation is loading. Please wait.

Presentation is loading. Please wait.

Topics in Molecular Modeling: II

Similar presentations


Presentation on theme: "Topics in Molecular Modeling: II"β€” Presentation transcript:

1 Topics in Molecular Modeling: II
Topics in Molecular Modeling: II. Numerical Methods for the Time-integration Xiantao Li Department of Mathematics, Pennsylvania State University

2 Outline Hamiltonian system (NVE ensemble) Operator-splitting methods
Energy conservation properties Stochastic models Strong and weak convergence

3 Hamiltonian systems Hamilton’s principle π‘ž = πœ•π» πœ•π‘ 𝑝 =βˆ’ πœ•π» πœ•π‘ž
Examples: mass spring model, many-body problems, pendulum model, Lotka-Volterra model etc. The mapping π‘ž 0 , 𝑝 0 β†’(π‘ž 𝑑 ,𝑝 𝑑 ) is symplectic A numerical method is symplectic if it defines a symplectic mapping

4 Many-Particle Systems
Coordinate and Momentum π‘ž 𝑖 𝑑 , 𝑝 𝑖 𝑑 , 𝑖=1,2,β‹―,𝑁. The equations: π‘ž 𝑖 = 𝑝 𝑖 π‘š 𝑖 𝑝 𝑖 =βˆ’ 𝑗≠𝑖 𝛻𝑉( π‘ž 𝑖 βˆ’ π‘ž 𝑗 ) Linear momentum:𝑃= 𝑖 𝑝 𝑖 Angular momentum: 𝐿= 𝑖 π‘ž 𝑖 Γ— 𝑝 𝑖 Total energy: 𝐻 π‘ž,𝑝 = 𝑖 𝑝 𝑖 2 2 π‘š 𝑖 𝑗≠𝑖 𝑉( π‘ž 𝑖 βˆ’ π‘ž 𝑗 ) Conservation: 𝑑 𝑑𝑑 𝑃=0, 𝑑 𝑑𝑑 𝐿=0, 𝑑 𝑑𝑑 𝐻=0. (q_i, p_i), i=1, 2, \cdots, N. \dot{q}_i=\frac{p_i}{m_i} \dot{p}_i= -\sum_{j\ne i}V'(|q_i-q_j|)\frac{q_i-q_j}{|q_i-q_j|} L=\sum_i q_i \times p_i H= \sum_i \frac{p_i^2}{2m_i} + \frac12\sum_{i\ne j}V(|q_i - q_j|)

5 First Integrals (Invariants)
In general, for an ODE system, π‘₯ =𝑓 π‘₯ , πœ™ π‘₯ is a first integral (or invariants) if 𝑑 𝑑𝑑 πœ™ π‘₯ 𝑑 =0. Most numerical methods preserve linear invariant Only some methods preserve quadratic invariants

6 Symmetry If πœŒβˆ˜π‘“=βˆ’π‘“βˆ˜πœŒ, the function is symmetric wrt 𝜌.
The solutions of the corresponding ODEs will be ρ- reversible 𝜌∘Φ= βˆ’ Ξ¦ βˆ’1 ∘𝜌. For example, 𝜌 π‘ž,𝑝 = π‘ž,βˆ’π‘ . A numerical method is ρ- reversible if the solution satisfies the same properties. Explicit RK methods are not symmetric.

7 Symplectic Structure Let 𝐽= 0 𝐼 βˆ’πΌ 0 . If y=(π‘ž,𝑝), then the Hamiltonian ODEs can be written as 𝑦 =π½βˆ‡π»(𝑦). A linear mapping A is symplectic if 𝐴 𝑇 𝐽𝐴=𝐽. A nonlinear mapping g(x) is symplectic if βˆ‡π‘”= πœ•π‘” πœ•π‘₯ is symplectic matrix. For Hamiltonian system, the Jacobian matrix πœ•(π‘ž 𝑑 ,𝑝 𝑑 ) πœ•( π‘ž 0 , 𝑝 0 ) is symplectic. Therefore, the mapping π‘ž 0 , 𝑝 0 β†’(π‘ž 𝑑 ,𝑝 𝑑 ) is symplectic

8 Symmetric and symplectic methods
Symmetric methods Order of accuracy is always even Very convenient for an extrapolation procedure Symplectic methods Very good energy conservation properties Promising accuracy over long time integration Provide good statistics. Explicit RK methods are not symplectic.

9 A special class of symplectic methods
Nonlinear dynamical system: π‘₯ =𝑓 π‘₯ ,π‘₯ 0 = π‘₯ 0 . dim π‘₯ =𝑁. Wronskian: π‘Š 𝑑 = πœ•π‘₯(𝑑) πœ• π‘₯ 0 . Variational equation: π‘Š 𝑑 =𝐴 𝑑 π‘Š 𝑑 , 𝐴 𝑑 :=βˆ‡π‘“ π‘₯ 𝑑 , π‘Š 0 =𝐼. Fundamental solution: 𝑦 =𝐴 𝑑 𝑦, 𝑦 0 = 𝑦 0 𝑦 𝑑 =π‘Š 𝑑 𝑦 0 . In particular, If 𝑦 𝑑 =𝑓 π‘₯ 𝑑 , then 𝑦 =𝐴 𝑑 𝑦, 𝑦 0 =𝑓 π‘₯ 0 . Therefore, 𝑓 π‘₯ 𝑑 =π‘Š 𝑑 𝑓 π‘₯ 0 = πœ•π‘₯ 𝑑 πœ• π‘₯ 0 𝑓( π‘₯ 0 ).

10 Semi-group notation For any quantity of interest: 𝐴 𝑑, π‘₯ 0 β‰”πœ™ π‘₯ 𝑑; π‘₯ 0 . Time derivative: 𝐴 =𝑓 π‘₯ 𝑑 𝑇 βˆ‡πœ™ π‘₯ 𝑑 =𝑓 π‘₯ 0 β‹… βˆ‡ π‘₯ 0 𝐴=:𝐿𝐴. L is a differential operator w.r.t. π‘₯ 0 Time evolution: 𝐴 =𝐿𝐴 𝐴 𝑑 = 𝑒 𝑑𝐿 𝐴 0 . This is the foundation for operator-splitting methods.

11 Newtonian dynamics Equations of motion: π‘₯ =𝑓(π‘₯)
Operator:𝐿= 𝑣 0 β‹… πœ• π‘₯ 0 +𝑓 π‘₯ 0 β‹… πœ• 𝑣 0 Operator splitting: 𝐿= 𝐿 1 + 𝐿 2 corresponds to x'=v, \quad v'=f(x)

12 Operator splitting Both equations are solvable Do we have No, unless

13 BCH (Baker-Campbell-Hausdorff) formulas
Commutator: BCH formula I: First-order splitting: Implementation: Symplectic Euler:

14 Symmetric Splitting BCH formula II: Symmetric splitting:
Implementation:

15 Properties of the second splitting method
Second order accuracy in time Symplectic Symmetric Energy conservation: 𝐻 π‘ž Δ𝑑 𝑑 , 𝑝 Δ𝑑 𝑑 βˆ’π» π‘ž 𝑑 ,𝑝 𝑑 =𝑂(Ξ” 𝑑 2 ) Conserve the linear and angular momentum

16 General splitting methods
Introduce multiple fractional steps The coefficients are determined by maximizing the order of accuracy. Formulas are available up to eighth order.

17 Extended Hamiltonian systems
In practice, the Hamiltonian system is often connected a heat bath or pressure bath, modeled by additional equations. Nose-Hoover thermostat π‘ž 𝑖 = 𝑝 𝑖 π‘š 𝑖 𝑝 𝑖 =βˆ’ βˆ‡ π‘ž 𝑖 π‘‰βˆ’πœ‰ 𝑝 𝑖 πœ‰ = 𝑔 𝑄 [ 1 dN 𝑖 𝑝 𝑖 2 π‘š 𝑖 βˆ’π‘‡] Symmetric splitting: 𝐿= 𝐿 π‘₯ + 𝐿 𝑝 + 𝐿 𝑁𝐻 𝑒 Δ𝑑𝐿 β‰ˆ 𝑒 𝐿 𝑁𝐻 Δ𝑑 𝑒 𝐿 𝑣 Δ𝑑 2 𝑒 𝐿 π‘₯ Δ𝑑 𝑒 𝐿 𝑣 Δ𝑑 2 𝑒 𝐿 𝑁𝐻 Δ𝑑 2

18 Problem with multiple scales
Hamiltonian system driven by two forces π‘₯ = 1 πœ– 2 𝑓 π‘₯ +𝑔(π‘₯) 𝑓 π‘₯ : short-range fast force 𝑔 π‘₯ : long-range slow force; More difficult to compute. Multiple time-stepping: evaluate 𝑓 π‘₯ on the fast time scale with step size 𝛿𝑑, and evaluate g π‘₯ on the slow time scale with step size Δ𝑑: Δ𝑑≫𝛿𝑑.

19 Multiple time-stepping
Let 𝑒 𝑑 𝐿 1 be the evolution operator for the fast dynamics: π‘₯ =𝑣, 𝑣 = 1 πœ– 2 𝑓 π‘₯ Let 𝑒 𝑑 𝐿 2 be the evolution operator for the slow dynamics π‘₯ =0 𝑣 =𝑔 π‘₯ Overall algorithm: 𝑒 Δ𝑑𝐿 β‰ˆ 𝑒 Δ𝑑 2 𝐿 2 𝑒 Δ𝑑 𝐿 1 𝑒 Δ𝑑 2 𝐿 It is symplectic. Operations: Kick + Evolve + Kick. Local accuracy: 𝑂 Ξ” 𝑑 3 πœ– 2 .

20 More accurate splitting
To eliminate the leading term in the error, we constructed the following splitting method 𝑒 Δ𝑑𝐿 β‰ˆ 𝑒 Δ𝑑 4 𝐿 2 𝑒 2Δ𝑑 3 𝐿 1 𝑒 3Δ𝑑 4 𝐿 2 𝑒 Δ𝑑 3 𝐿 1 This method also have better energy conservation property.

21 Example: dynamics of butane molecule

22 𝑑π‘₯=𝑣𝑑𝑑 𝑑𝑣= 𝑓 π‘₯ βˆ’π›Ύπ‘£ 𝑑𝑑+πœŽπ‘‘π‘Š(𝑑)
Langevin dynamics Langevin stochastic differential equation: 𝑑π‘₯=𝑣𝑑𝑑 𝑑𝑣= 𝑓 π‘₯ βˆ’π›Ύπ‘£ 𝑑𝑑+πœŽπ‘‘π‘Š(𝑑) π‘₯,π‘£βˆˆ 𝑅 𝑑 : position, velocity 𝑓=𝑓 π‘₯ : 𝑅 𝑑 β†’ 𝑅 𝑑 : non-linear conservative potential, 𝑓 π‘₯ = βˆ’ βˆ‡ π‘₯ 𝑉(π‘₯) π›Ύβˆˆ 𝑅 𝑑×𝑑 ,𝜎∈ 𝑅 π‘‘Γ—π‘š : friction matrix constant and diffusion matrix constant, related by the fluctuation dissipation formula 𝜎 𝜎 𝑇 =2 π‘˜ 𝐡 𝑇𝛾 π‘Š=( π‘Š 1 , π‘Š 2 ,…, π‘Š π‘š )={π‘Š 𝑑 :𝑑β‰₯0}: standard π‘š-dimensional Wiener process / Brownian motion Assume additive noise: 𝜎 is constant

23 Strong convergence Definition: A one-step method π‘Œ= π‘Œ Δ𝑑 with step size Δ𝑑>0 is said to converge in the strong sense to a stochastic process 𝑋= 𝑋 𝑑 at time 𝑇=𝑁Δ𝑑, 𝑁=𝑁 Δ𝑑 ∈ {1,2,…} provided 𝐸 𝑋 𝑇 βˆ’ π‘Œ Δ𝑑 𝑇 β†’0 as Δ𝑑↓0. Further, we say the convergence is of order π›Ύβˆˆ{0.5,1,1.5,2,…} provided there exists constants 𝐢=𝐢 𝑇 ,Ξ”>0 such that 𝐸 𝑋 𝑇 βˆ’ π‘Œ Δ𝑑 𝑇 <𝐢Δ 𝑑 𝛾 for all 0<Δ𝑑<Ξ”. Reduces to usual def. of convergence when 𝜎=0 To test convergence rates numerically, we take M many samples (M>>1) of X and Y and approximate the error: 𝐸 𝑋 𝑇 βˆ’ π‘Œ Δ𝑑 𝑇 β‰ˆ 1 𝑀 π‘˜=1 𝑀 𝑋 𝑇 πœ” π‘˜ βˆ’ π‘Œ Δ𝑑 𝑇, πœ” π‘˜ =:𝐸 Δ𝑑 .

24 Strong ItΓ΄-Taylor expansion
Analysis will involve comparison with the ItΓ΄-Taylor formula. Notation: step size Δ𝑑>0, independent Brownian increments Ξ” π‘Š 𝑗 ≔ π‘Š 𝑗 Δ𝑑 , 𝐸 Ξ” π‘Š 𝑖 Ξ” π‘Š 𝑗 =Δ𝑑 𝛿 𝑖𝑗 , and independent stochastic integrals 𝐼 𝑗,0 ≔ 0 Δ𝑑 π‘Š 𝑗 𝑑 𝑑𝑑 , 𝐸 𝐼 𝑖,0 𝐼 𝑗,0 = Ξ” 𝑑 𝛿 𝑖𝑗 Order 1 and : π‘₯ Δ𝑑 𝑣 Δ𝑑 = π‘₯ 𝑣 + 𝑣 𝑓 π‘₯ βˆ’π›Ύπ‘£ Ξ”t+ 𝑗=1 π‘š 0 𝜎 𝑗 Ξ” π‘Š 𝑗 +𝐻.𝑂.𝑇 π‘₯ Δ𝑑 𝑣 Δ𝑑 = π‘₯ 𝑣 + 𝑣 𝑓 π‘₯ βˆ’π›Ύπ‘£ Δ𝑑+ 𝑗=1 π‘š 0 𝜎 𝑗 Ξ” π‘Š 𝑗 + 𝑓 π‘₯ βˆ’π›Ύπ‘£ βˆ‡ π‘₯ 𝑓 π‘₯ π‘£βˆ’π›Ύπ‘“ π‘₯ + 𝛾 2 𝑣 Ξ” 𝑑 𝑗=1 π‘š 𝜎 𝑗 βˆ’π›Ύ 𝜎 𝑗 𝐼 𝑗,0 +𝐻.𝑂.𝑇. We derived an order 3. Higher order stochastic integrals are involved: 0 Δ𝑑 0 𝑑 𝑑𝑠𝑑 π‘Š 𝑗 (𝑑) , 0 Δ𝑑 0 𝑑 0 𝑠 𝑑 π‘Š 𝑗 𝑒 𝑑𝑠𝑑𝑑

25 π‘₯ 𝑛+1 𝑣 𝑛+1 = π‘₯ 𝑛 𝑣 𝑛 + 𝑣 𝑛 𝑓 π‘₯ 𝑛 βˆ’π›Ύ 𝑣 𝑛 Ξ”t+ 𝑗=1 π‘š 0 𝜎 𝑗 Ξ” π‘Š 𝑛 𝑗
Existing methods References: for example, (1) Leimkuhler & Matthews, Molecular Dynamics (2014) and (2) Kloeden & Platen, Num. Sol. Of SDE’s (1991) Euler Maruyama (order 1): π‘₯ 𝑛+1 𝑣 𝑛+1 = π‘₯ 𝑛 𝑣 𝑛 𝑣 𝑛 𝑓 π‘₯ 𝑛 βˆ’π›Ύ 𝑣 𝑛 Ξ”t+ 𝑗=1 π‘š 0 𝜎 𝑗 Ξ” π‘Š 𝑛 𝑗 Milstein (order 1) and ItΓ΄-Taylor method (order 1): reduce to the same method as Euler Maruyama for Langevin dynamics with additive noise (i.e. constant diffusion 𝜎) ItΓ΄-Taylor method (order 2): requires computing βˆ‡ π‘₯ 𝑓(π‘₯) Stochastic velocity Verlet (SVV): no βˆ‡ π‘₯ 𝑓(π‘₯) and only one 𝑓 evaluation. No clear generalization to a third order method. Refer to Swope, Anderson, Berens & Wilson (1982). Theorem: (Telatovich and Li) SVV has strong order 2. ItΓ΄-Taylor method (order 3): requires computing βˆ‡ π‘₯ 𝑓(π‘₯) and βˆ‡ π‘₯ 2 𝑓(π‘₯)

26 Existing methods (continued)
Direct splitting methods: split 𝑑π‘₯=𝑣𝑑𝑑 𝑑𝑣= 𝑓 π‘₯ βˆ’π›Ύπ‘£ 𝑑𝑑+πœŽπ‘‘π‘Š(𝑑) into 𝑑π‘₯=𝑣𝑑𝑑 𝑑𝑣= and 𝑑π‘₯= 𝑑𝑣= 𝑓 π‘₯ βˆ’π›Ύπ‘£ 𝑑𝑑+πœŽπ‘‘π‘Š(𝑑) Solve these simpler linear systems exactly, back-to-back Solution expansion involves Lie brackets High order convergence only in the weak sense Can do more sophisticated direct splittings Direct splitting methods lack stochastic integrals necessary for higher order convergence in strong sense Theorem: (Telatovich & Li) The splitting methods have strong order at most 1. Challenge: Higher order schemes require not only more smoothness but also more information about W!

27 Higher order operator-splitting methods
Starting point: Kunita’s solution operator π‘Œ 𝑑 (Kunita, 1980). 𝑆 𝑑 = exp π‘Œ 𝑑 𝑆 0 , 𝑆 0 = π‘₯,𝑣 𝑇 π‘Œ 𝑑 is given by: π‘Œ 𝑑 =𝑑 𝑋 0 + 𝑗=1 π‘š π‘Š 𝑗 𝑑 𝑋 𝑗 𝑗=1 π‘š 𝑑, π‘Š 𝑗 𝑑 [ 𝑋 0 , 𝑋 𝑗 ] 𝑗=1 π‘š 𝑑, π‘Š 𝑗 𝑑 ,𝑑 𝑋 0 , 𝑋 𝑗 , 𝑋 0 +𝐻.𝑂.𝑇. Vector fields 𝑋 0 ≔𝑣 πœ• π‘₯ + 𝑓 π‘₯ βˆ’π›Ύπ‘£ πœ• 𝑣 , 𝑋 𝑗 ≔ 𝜎 𝑗 πœ• 𝑣 , Lie bracket 𝑋 0 , 𝑋 𝑗 ≔ 𝑋 0 𝑋 𝑗 βˆ’ 𝑋 𝑗 𝑋 0 , stochastic integrals 𝑑, π‘Š 𝑗 𝑑 ≔ 0 𝑑 𝑠𝑑 π‘Š 𝑗 𝑠 βˆ’ 0 𝑑 π‘Š 𝑗 𝑠 𝑑𝑠 Third order brackets and integrals defined similarly ODE special case (no noise 𝜎=0): π‘Œ 𝑑 =𝑑 𝑋 0 is a simple finite sum (comprehensive exam) We can make truncations of π‘Œ 𝑑

28 Truncations of the operator π‘Œ 𝑑
Truncation I: π‘Œ 𝑑 β‰ˆ π‘Œ 𝑑 𝐼 =𝑑 𝑋 0 + 𝑗=1 π‘š π‘Š 𝑗 𝑑 𝑋 𝑗 Truncation II: π‘Œ 𝑑 β‰ˆ π‘Œ 𝑑 𝐼𝐼 =𝑑 𝑋 0 + 𝑗=1 π‘š π‘Š 𝑗 𝑑 𝑋 𝑗 𝑗=1 π‘š 𝑑, π‘Š 𝑗 𝑑 [ 𝑋 0 , 𝑋 𝑗 ] Truncation III: π‘Œ 𝑑 β‰ˆ π‘Œ 𝑑 𝐼𝐼𝐼 =𝑑 𝑋 0 + 𝑗=1 π‘š π‘Š 𝑗 𝑑 𝑋 𝑗 𝑗=1 π‘š 𝑑, π‘Š 𝑗 𝑑 [ 𝑋 0 , 𝑋 𝑗 ] 𝑗=1 π‘š 𝑑, π‘Š 𝑗 𝑑 ,𝑑 𝑋 0 , 𝑋 𝑗 , 𝑋 0

29 Multiple stochastic integrals
For truncations I, II, and III (Misawa, 2000): Ξ” π‘Š 𝑗 = π‘Š 𝑗 Δ𝑑 =∫1𝑑 π‘Š 𝑗 (𝑑), Ξ” π‘ˆ 𝑗 ≔ 1 2 Δ𝑑,Ξ” π‘Š 𝑗 = 𝑑𝑠𝑑 π‘Š 𝑗 𝑑 βˆ’ 1𝑑 π‘Š 𝑗 𝑠 𝑑𝑑 , Ξ” 𝑉 𝑗 ≔ Δ𝑑,Ξ” π‘Š 𝑗 ,Δ𝑑 = 𝑑𝑒𝑑 π‘Š 𝑗 𝑠 𝑑𝑑 βˆ’2 1𝑑 π‘Š 𝑗 𝑒 𝑑𝑠𝑑𝑑 +Δ𝑑Δ π‘ˆ 𝑗 Joint symmetric covariances (T.): 𝐸 Ξ” π‘Š 𝑖 Ξ” π‘Š 𝑗 𝐸 Ξ” π‘Š 𝑖 Ξ” π‘ˆ 𝑗 𝐸 Ξ” π‘Š 𝑖 Ξ” 𝑉 𝑗 𝐸 Ξ” π‘ˆ 𝑖 Ξ” π‘ˆ 𝑗 𝐸 Ξ” π‘ˆ 𝑖 Ξ” 𝑉 𝑗 𝐸 Ξ” 𝑉 𝑖 Ξ” 𝑉 𝑗 3π‘šΓ—3π‘š = Δ𝑑𝐼 Ξ” 𝑑 𝐼 βˆ’ Ξ” 𝑑 𝐼 Ξ” 𝑑 𝐼 Computed using Itô’s isometry 𝐸 0 Δ𝑑 𝑓 𝑑 𝑑 π‘Š 𝑗 𝑑 =𝐸 0 Δ𝑑 𝑓 2 𝑑 𝑑𝑑 and 𝐸 π‘Š 𝑑 π‘Š 𝑠 = min (𝑑,𝑠)

30 Reduced Differential Equations
π‘Œ Δ𝑑 β‰ˆ π‘Œ Δ𝑑 𝐼 ↔ π‘₯ =𝑣Δ𝑑 𝑣 = 𝑓 π‘₯ βˆ’π›Ύπ‘£ Δ𝑑+πœŽΞ”π‘Š π‘Œ Δ𝑑 β‰ˆ π‘Œ Δ𝑑 𝐼𝐼 ↔ π‘₯ =𝑣π›₯π‘‘βˆ’πœŽπ›₯π‘ˆ 𝑣 = 𝑓 π‘₯ βˆ’π›Ύπ‘£ π›₯𝑑+𝜎π›₯π‘Š+π›ΎπœŽπ›₯π‘ˆ π‘Œ Δ𝑑 β‰ˆ π‘Œ Δ𝑑 𝐼𝐼𝐼 ↔ π‘₯ =π‘£Ξ”π‘‘βˆ’πœŽΞ”π‘ˆ+π›ΎπœŽΞ”π‘‰ 𝑣 = 𝑓 π‘₯ βˆ’π›Ύπ‘£ Δ𝑑+πœŽΞ”π‘Š+π›ΎπœŽΞ”π‘ˆβˆ’ 𝛻 π‘₯ 𝑓 π‘₯ 𝜎+ 𝛾 2 𝜎 π›₯𝑉 Once sampled, we can treat Ξ”π‘Š,Ξ”π‘ˆ,Δ𝑉 as constants Rescale 𝑑→𝑑Δ𝑑 and solve from 0 to 𝑇Δ𝑑 instead of 0 to 𝑇 Approximate 𝑆 Δ𝑑 = exp π‘Œ Δ𝑑 𝑆(0)β‰ˆ 𝑆 𝐼,𝐼𝐼,𝐼𝐼𝐼 Δ𝑑 ≔ exp π‘Œ Δ𝑑 I,II,III 𝑆 0 , still non-linear due to f Approximate 𝑆 𝐼,𝐼𝐼,𝐼𝐼𝐼 π›₯𝑑 numerically by standard splitting techniques

31 Operator-splitting methods
Useful integration method for ODEs. Order 1 naΓ―ve splitting: exp 𝐴+𝐡 β‰ˆ exp 𝐴 exp 𝐡 Order 2 symmetric/Strang splitting: exp 𝐴+𝐡 β‰ˆ exp 𝐴 2 exp 𝐡 exp 𝐴 2 Order 4 Neri splitting: exp 𝐴+𝐡 β‰ˆ exp 𝑐 1 𝐴 exp 𝑑 1 𝐡 exp 𝑐 2 𝐴 exp 𝑑 2 𝐡 exp 𝑐 3 𝐴 exp 𝑑 3 𝐡 exp 𝑐 4 𝐴 where 𝑐 1 = 1 2 2βˆ’ , 𝑐 2 = 1 2 βˆ’ 𝑐 1 , 𝑐 3 = 𝑐 2 , 𝑐 4 = 𝑐 1 and 𝑑 1 = 1 2βˆ’ 3 2 , 𝑑 2 =1βˆ’2 𝑑 1 , 𝑑 3 = 𝑑 1

32 Baker-Campbell-Hausdorff (BCH) formula
Useful for obtaining a β€œlocal” time estimate for the strong error. Theorem: If A and B are (non-commuting) matrices and 𝐴,𝐡 β‰”π΄π΅βˆ’ 𝐡𝐴≠0, then exp 𝑑𝐴 exp 𝑑𝐡 = exp (𝑑 𝐢 1 + 𝑑 2 𝐢 2 + 𝑑 3 𝐢 3 +𝑂( 𝑑 4 )) , where exp 𝐴 ≔ 𝑛=0 ∞ 𝐴 𝑛 𝑛! is the matrix exponential, and the coefficients are given by, 𝐢 1 =𝐴+𝐡, 𝐢 2 = 1 2 𝐴,𝐡 , and 𝐢 3 = 𝐴, 𝐴,𝐡 𝐡, 𝐡,𝐴 . Proof: Follow the definitions above. For the formula in full generality, with a description of every coefficient, see Hairer, Lubich & Wanner (2005).

33 Doob’s inequality (special case)
Useful for obtaining a uniform β€œglobal” time estimate on the strong error. Theorem (Doob): If 𝑋 𝑑 is a martingale then 𝐸 sup 𝑋 𝑑 2 :0≀𝑑≀𝑇 ≀4𝐸 𝑋 𝑇

34 Truncation I Recall: π‘Œ Δ𝑑 𝐼 ↔ π‘₯ =𝑣Δ𝑑 𝑣 = 𝑓 π‘₯ βˆ’π›Ύπ‘£ Δ𝑑+πœŽΞ”π‘Š
Split π‘Œ Δ𝑑 𝐼 =𝐴+𝐡 where 𝐴={𝑣Δ𝑑} πœ• π‘₯ 𝐡={ 𝑓 π‘₯ βˆ’π›Ύπ‘£ Δ𝑑+πœŽΞ”π‘Š} πœ• 𝑣 Notice: 𝐴↔ π‘₯ =𝑣Δ𝑑 𝑣 = and 𝐡↔ π‘₯ = 𝑣 = 𝑓 π‘₯ βˆ’π›Ύπ‘£ Δ𝑑+πœŽΞ”π‘Š These equations can be solved exactly. Theorem: The naΓ―ve, symmetric, and Neri splittings give consistent methods with order 1 convergence. Proof (sketch): Use BCH formula, compare with ItΓ΄-Taylor expansions, and use Doob.

35 Truncation II Recall: π‘Œ Δ𝑑 𝐼𝐼 ↔ π‘₯ =π‘£Ξ”π‘‘βˆ’πœŽΞ”π‘ˆ 𝑣 = 𝑓 π‘₯ βˆ’π›Ύπ‘£ Δ𝑑+πœŽΞ”π‘Š+π›ΎπœŽΞ”π‘ˆ
Split π‘Œ Δ𝑑 𝐼𝐼 =𝐴+𝐡 where 𝐴={π‘£Ξ”π‘‘βˆ’πœŽΞ”π‘ˆ} πœ• π‘₯ 𝐡={ 𝑓 π‘₯ βˆ’π›Ύπ‘£ Δ𝑑+πœŽΞ”π‘Š+π›ΎπœŽΞ”π‘ˆ} πœ• 𝑣 Notice: 𝐴↔ π‘₯ =π‘£Ξ”π‘‘βˆ’πœŽΞ”π‘ˆ 𝑣 = and 𝐡↔ π‘₯ = 𝑣 = 𝑓 π‘₯ βˆ’π›Ύπ‘£ Δ𝑑+πœŽΞ”π‘Š+π›ΎπœŽΞ”π‘ˆ These equations can be solved exactly. Theorem: (T. & Li) The naΓ―ve, symmetric, and Neri splittings give consistent methods with convergence orders 1, 2, and 2, respectively. Proof (sketch): Use the same strategy as for truncation I.

36 Truncation III Recall:
π‘Œ Δ𝑑 𝐼𝐼𝐼 ↔ π‘₯ =π‘£Ξ”π‘‘βˆ’πœŽΞ”π‘ˆ+π›ΎπœŽΞ”π‘‰ 𝑣 = 𝑓 π‘₯ βˆ’π›Ύπ‘£ Δ𝑑+πœŽΞ”π‘Š+π›ΎπœŽΞ”π‘ˆβˆ’ βˆ‡ π‘₯ 𝑓 π‘₯ 𝜎+ 𝛾 2 𝜎 Δ𝑉 Split π‘Œ Δ𝑑 𝐼𝐼𝐼 =𝐴+𝐡 where 𝐴={π‘£Ξ”π‘‘βˆ’πœŽΞ”π‘ˆ+π›ΎπœŽΞ”π‘‰} πœ• π‘₯ 𝐡={ 𝑓 π‘₯ βˆ’π›Ύπ‘£ Δ𝑑+πœŽΞ”π‘Š+π›ΎπœŽΞ”π‘ˆβˆ’ βˆ‡ π‘₯ 𝑓 π‘₯ 𝜎+ 𝛾 2 𝜎 Δ𝑉} πœ• 𝑣 Notice: 𝐴↔ π‘₯ =π‘£Ξ”π‘‘βˆ’πœŽΞ”π‘ˆ+π›ΎπœŽΞ”π‘‰ 𝑣 = and 𝐡↔ π‘₯ = 𝑣 = 𝑓 π‘₯ βˆ’π›Ύπ‘£ Δ𝑑+πœŽΞ”π‘Š+π›ΎπœŽΞ”π‘ˆβˆ’ βˆ‡ π‘₯ 𝑓 π‘₯ 𝜎+ 𝛾 2 𝜎 Δ𝑉 Numerical evidence: truncation III with the Neri splitting gives strong order 3 Analysis is complicated

37 Numerical tests One dimensional pendulum: 𝑓 π‘₯ =βˆ’ sin π‘₯ ∈ 𝑅 1 , 𝛾=𝜎=2, π‘₯ 0 = 𝑣 0 =1 Lennard-Jones cluster (LJ7), function of distance: 𝑓 𝑖 π‘₯ = 𝑗≠𝑖,𝑗= π‘₯ 𝑖𝑗 βˆ’ π‘₯ 𝑖𝑗 π‘₯ 𝑖𝑗 / π‘₯ 𝑖𝑗 ∈ ℝ 3 π‘₯ 𝑖𝑗 = π‘₯ 𝑖 βˆ’ π‘₯ 𝑗 ∈ ℝ 3 , Euclidean distance |π‘₯ 𝑖𝑗 |:= π‘₯ 𝑖𝑗 2 π‘₯= π‘₯ 1 , π‘₯ 2 ,…, π‘₯ 7 ∈ ℝ 21 , 𝑓= 𝑓 1 , 𝑓 2 ,…, 𝑓 7 : ℝ 21 β†’ ℝ 21 𝛾=10 𝐼 21Γ—21 ∈ ℝ 21Γ—21 , 𝜎= 2 π‘˜ 𝐡 𝑇 𝛾 = 2Γ—0.3 𝛾 ∈ ℝ 21Γ—21

38 Trajectory comparison
One trajectory using three different operator splitting methods. Constants 𝛾=𝜎=2; initial conditions π‘₯ 0 = 𝑣 0 =1. Same driving Wiener process with small 𝛿𝑑= 2 βˆ’10 . Exact solution: Euler Maruyama with step size 𝛿𝑑. Approximate solutions: use larger step size Δ𝑑= 2 βˆ’2 .

39 Numerical tests


Download ppt "Topics in Molecular Modeling: II"

Similar presentations


Ads by Google