Download presentation
Presentation is loading. Please wait.
1
Transformation of Graphs
Andrew Robertson
2
Transformation of f(x)+a
f(x) = x2
3
Transformation of f(x)+a
y = x2 + 3
4
Transformation of f(x)+s
y = x2 - 2
5
Transformation of sf(x)
f(x) = (x-2)(x-3)(x+1) 2f(x)
6
Transformation of sf(x)
y=2f(x) = 2(x-2)(x-3)(x+1) 0.5f(x)
7
Transformation of sf(x)
y=0.5f(x) = 0.5(x-2)(x-3)(x+1)
8
Transformation of f(x+s)
f(x) = x2 f(x-2)
9
Transformation of f(x+s)
y=f(x-2) = (x-2)2 f(x+2)
10
Transformation of f(x+s)
y=f(x+2) = (x+2)2
11
Transformation of f(sx)
f(x) = (x-2)(x-3)(x+1) f(2x)
12
Transformation of f(sx)
y=f(2x) = (2x-2)(2x-3)(2x+1) f(0.5x)
13
Transformation of f(sx)
y=f(0.5x) = (0.5x-2)(0.5x-3)(0.5x+1) -f(x)
14
Transformation of -f(x)
f(x) = (x-2)(x-3)(x+1) -f(x)
15
Transformation of -f(x)
y=-f(x) = -[(x-2)(x-3)(x+1)] f(-x)
16
Transformation of f(-x)
f(x)=(x-2)(x-3)(x+1) y=f(-x)=(-x-2)(-x-3)(-x+1)
17
Combinations of transformations
f(x)= x2 then y=f(x+2)-3 = (x+2)2 -3
18
Combinations of transformations
y = x2 then y=-2f(x-3) = -2(x-3)2
19
F(αx±β) - Inside brackets always effects the horizontal
αF(x) ±β - Outside brackets always effects the vertical
20
f(x) ± a Vertical shift (x,y) -> (x, y ± a)
f(x ± a) Horizontal shift (x,y) -> (x a, y) Note that when + shift to Left and – shift to Right αf(x) Vertical Stretch/compression by factor α (x,y) -> (x, αy) f(αx) Horizontal Stretch/compression by factor 1/α (x,y) -> (x/α, y) f(-x) Refection though y axes (x,y) (-x, y) - f( x) Reflection through x axes (x,y) ( x, -y)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.