Download presentation
Presentation is loading. Please wait.
1
Permutahedra and the Saneblidze-Umble Diagonal
By Stephen Weaver Directed by Dr. Ron Umble
2
Computational Geometry
the study of algorithms to solve problems in geometry
3
Permutahedra Geometric shapes based on permutations of the partitions of a set {1,2} {3} Each permutation corresponds to a face of some permutahedron We use bar notation for convenience {3} {1,2} = 3|12 The single partition {1,2,3,…,n} corresponds to the top dimensional face
4
Permutahedra The boundary of a face consists of adding a single bar in every possible way 1|2 2|1 12 Two faces are adjacent if their boundaries intersect 2|1|3 1|3|2 12|3 1|23 1|2|3
5
Permutahedra - Examples
1|2 2|1 12 1 P3 3|12 3|1|2 3|2|1 P4 13|2 23|1 123 1|3|2 2|3|1 1|23 2|13 1|2|3 12|3 2|1|3
6
Permutahedra - Examples
1|2 2|1 12 1 P3 3|12 3|1|2 3|2|1 P4 13|2 23|1 123 1|3|2 2|3|1 1|23 2|13 1|2|3 12|3 2|1|3
7
Permutahedra - Examples
1|2 2|1 12 1 P3 3|12 3|1|2 3|2|1 P4 13|2 23|1 123 1|3|2 2|3|1 1|23 2|13 1|2|3 12|3 2|1|3
8
Permutahedra - Examples
1|2 2|1 12 1 P3 3|12 3|1|2 3|2|1 P4 13|2 23|1 123 123|4 1|3|2 12|3|4 2|3|1 12|34 1|23 2|13 1|2|3 12|3 2|1|3
9
Diagonal Given a set S, Diagonal of S S { (x,x) | x є S } S S
10
Diagonal on P2 P2 12 2|1 1|2 12 1|2 2|1 2|1 2|2 1|2 1|2
2|1 1|2
11
Step Matrix Example Reading a Step Matrix 5 6 4 7 8 1 9 2 3 1 2 3 4
14|2|3 4|123
12
Step Matrix Example Reading a Step Matrix 5 6 4 7 8 1 9 2 3 1 2 3 4
14|2|3
13
Step Matrix Example Reading a Step Matrix 5 6 4 7 8 1 9 2 3 1 2 3 4
14|2|3 4|123
14
Transforming a Step Matrix
1 3 1 3 2 5 2 5 4 4 1 3 1 2 2 3 4 5 4 5
15
S-U Diagonal on P3 1 1 2 1 3 1 2 2 1 2 3 1 3 2 2 3 3 3 1|2|3123 1|23 13|2 12|32|1 3 2|1323| 1 13|23|1 2 1233|2| 1 1 1 2 2 3 3 12|323|1 1|233|12
16
Calculating the S-U Diagonal
Skip step matrix stage – Use permutations and strings One – to – one correspondence between permutations and step matrices
17
Calculating the S-U Diagonal
Skip step matrix stage – Use permutations and strings One – to – one correspondence between permutations and step matrices 2 4132 1 3 4 A=4 B=4
18
Calculating the S-U Diagonal
Skip step matrix stage – Use permutations and strings One – to – one correspondence between permutations and step matrices 2 4132 1 3 4 A=41 B=4|1
19
Calculating the S-U Diagonal
Skip step matrix stage – Use permutations and strings One – to – one correspondence between permutations and step matrices 2 4132 1 3 4 A=41|3 B=4|13
20
Calculating the S-U Diagonal
Skip step matrix stage – Use permutations and strings One – to – one correspondence between permutations and step matrices 2 4132 1 3 4 A=41|32 B=4|13|2 14|23 4|13|2
21
S-U Diagonal Acts multiplicatively w.r.t. the bar operation
(12|34) = (12) | (34) = (1|2 2|1) | (3|4 4|3) = (1|2|3|412|34) + (1|2|3412|4|3) + (12|3|42|1|34) + (12|342|1|4|3)
22
Generic Diagonal abc Three Element 2|134 Diagonal a|b|c abc
a|bc ac|b ab|c b|ac b|ac bc|a ac|b c|ab abc c|b|a ab|c bc|a a|bc c|ab (2|134) = (2)| (134) = 2|1|3|4 2|134 2|1|34 2|14|3 2|13|4 2|3|14 2|3|14 2|34|1 2|14|3 2|4|13 2|134 2|4|3|1 2|13|4 2|34|1 2|1|34 2|4|13
23
Associativity (ab)c = a(bc) m( m(a,b) , c ) = m( a , m(b,c) )
m(m x id)(a,b,c) = m(id x m)(a,b,c) S-U Diagonal takes one input and produces two outputs – “comultiplication” ( id) (X) = (id ) (X) ? Is “coassociative?”
24
Not Coassociative - Example
(x1) (123) + (1x) (123) = 2|1|32|1323| |2|32|1323|1 +1|3|213|23| |2|313|23|12 +12|32|133|2| |32|132|3|1 +12|32|1|323| |32|3|123|1 +1|2313|23|2| |2313|23|2|1 +1|231|3|23| |233|1|23|12 (mod 2) This measures the error from being coassociative.
25
Homotopy Coassociativity
Let Vi be the Z2-vector space whose basis is the i dimensional faces of Pn Let : Vi Vi-1 be the boundary operation Let H : Vi (V* V* V*) i+1 such that H+H=(id) + (id) H acts multiplicatively with respect to bar H(13|24) = H(13) | H(24)
26
Homotopy Function H(1) = 0 H(12) = 0
H(123) = 12|3x2|13x23|1 + 1|23x13|2x3|12 H(1234) = ?
27
Calculating H(1234) H = (id) + (id) + H
X = H(1234) є (V* V* V*)4 (X) = [(id) + (id) + H](1234)
28
Calculating H(1234) H = (id) + (id) + H
X = H(1234) є (V* V* V*)4 (X) = [(id) + (id) + H](1234) (V* V* V*)4 (V* V* V*)3
29
Calculating H(1234) H = (id) + (id) + H
X = H(1234) є (V* V* V*)4 (X) = [(id) + (id) + H](1234) (V* V* V*)4 120,960 x 73,729 (V* V* V*)3
30
One Solution for H(1234) H(1234) =
12|34x24|13x4|2|3|1 + 12|34x24|13x4|3|2| |4x3|24|1x34|2| |4x3|2|14x34|2| |4x3|2|14x3|24| |3x4|2|13x4|23|1 + 12|34x24|1|3x4|2| |34x24|3|1x4|23|1 + 12|34x2|14|3x24|3|1 + 12|34x2|14|3x2|4| |34x2|14|3x4|23|1 + 12|34x2|4|13x4|23|1 + 13|24x34|1|2x4|3| |24x3|14|2x34|2|1 + 13|24x3|14|2x3|4| |23x4|13|2x4|3|12 + 1|234x14|3|2x4|13|2 + 1|234x14|3|2x4|3|12 + 1|234x4|13|2x4|3| |14x3|24|1x34|2|1 + 2|134x24|3|1x4|23|1 + 12|34x2|1|4|3x24| |34x2|4|1|3x24| |24x3|1|4|2x34| |24x3|4|1|2x34| |3|4x23|14x34|2|1 + 12|3|4x23|14x3|24|1 + 12|3|4x2|134x24|3|1 + 12|3|4x2|134x4|23|1 + 12|4|3x24|13x4|23|1 + 13|2|4x3|124x34|2|1 + 1|23|4x134|2x4|3|12 + 1|23|4x13|24x34|1|2 + 1|23|4x13|24x3|14|2 + 1|23|4x13|24x4|3|12 + 1|23|4x3|124x34|2|1 + 1|24|3x14|23x4|13|2 + 1|24|3x14|23x4|3|12 + 1|2|34x124|3x4|23|1 + 1|2|34x124|3x4|2|13 + 1|2|34x14|23x4|13|2 + 1|2|34x14|23x4|3|12 + 1|2|34x24|13x4|23|1 + 1|3|24x134|2x4|3|12 + 2|13|4x23|14x34|2|1 + 2|13|4x23|14x3|24|1 + 2|14|3x24|13x4|23|1 + 12|3|4x2|13|4x234|1 + 12|3|4x2|13|4x23| |3|4x2|1|34x24| |3|4x2|3|14x234|1 + 12|4|3x2|14|3x24| |2|4x3|1|24x34| |4|2x3|14|2x34|12 + 1|23|4x13|2|4x34|12 + 1|23|4x13|2|4x3| |23|4x1|3|24x134|2 + 1|23|4x3|14|2x34|12 + 1|23|4x3|1|24x34|12 + 1|24|3x14|2|3x4| |2|34x14|2|3x4| |2|34x1|24|3x14|23 + 1|2|34x1|24|3x4| |2|34x2|14|3x24|13 + 1|3|24x3|14|2x34|12 + 2|13|4x2|3|14x234|1
31
Future Work Finding an H with minimal number of terms
Modifying / Parallelizing the row reduction algorithm to calculate H for n > 4 Picture on second page found at: Cross Partial Union Delta
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.