Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mechanical Concept MOLDFLOW KOREA 1995.8.

Similar presentations


Presentation on theme: "Mechanical Concept MOLDFLOW KOREA 1995.8."— Presentation transcript:

1 Mechanical Concept MOLDFLOW KOREA 1995.8

2 Mechanical Concept UNIT SI kg m sec N Pa Metric kg mm sec kgf kgf/cm2
mass length time force pressure SI kg m sec N Pa Metric kg mm sec kgf kgf/cm2 English lb in sec lbf psi

3 Mechanical Concept Examples for UNIT SI Metric English Force Pressure
0.102 kgf 1 kgf 0.453 kgf 0.225 lbf 2.206 lbf 1 lbf Force 1 MPa 0.1 MPa 6.9 kPa 10.2 kgf/cm2 1 kgf/cm2 0.07 kgf/cm2 145 psi 14.22 psi 1 psi Pressure Pa = N / m psi = lb / in2

4 Mechanical Concept Stress : S = P / A Strain : / L L L L
Stress & Strain A ( m2 or cm2 ) L L P ( N or kgf ) Stress : S = P / A Strain : / L L Unit : N/m2 = Pa (kgf/cm2 ) Unit : %

5 Mechanical Concept  Strain-Stress Curve (1) E Elastic Plastic
Ductile Fracture Elastic Plastic Yield Point Tensile Strength = Stress at Yield Break Point Brittle Fracture Elastic Limt E Proportional Limit Tensile Strength = Stress at Break

6 Mechanical Concept Stress-Strain Curve (2) E =  Strain Energy ;
Material-A Material-B   E =  Strain Energy ; Toughness Toughness Material A > Material B Strength & Stiffness Material A < Material B

7 Mechanical Concept Examples for Tensile Properties Acetal ABS Nylon
Tensile Strength (73F,lb/in2) Modulus (73F,b/in2X106) Acetal ABS Nylon Polycarbonate Polyethylene Polyester PMMA PPO Polypropylene Polystyrene Polysulphone PVC 10 4 - 8 8 - 12 8 - 10 1 - 6 8 - 11 4 - 6 5 - 11 9 - 10 5 - 9 0.5 0.3 0.4 0.2

8 Mechanical Concept Poisson's Ratio () H / H L / L  Poisson's Ratio

9 Mechanical Concept Examples for Poisson's ratio 0.28 - 0.29 0.33 0.19
탄소강 알루미늄 콩크리트 유리 Rubber Most Crystalline & Glassy Polymer Eng. Plastics 0.33 0.19 0.25

10 Mechanical Concept Principal Stress Normal Stress Principal Stress =
Max. Normal Stress Shear Stress Shear Stress is zero on this Surface Surface

11 Mechanical Concept yx xy xy Mohr Circle y y y x'y' x x x 2
+ y x' y yx y  +yx xy x'y'  x'y' x' x  x x xy 2 1 y -

12 Mechanical Concept xy xy   Principle Stress
prin-1xyxyxy prin-2xyxyxy [Example ]   xy xy

13 Mechanical Concept 1. Von Mises Stress V.MISES > Y
Criterion for Yield 1. Von Mises Stress V.MISES  ( Shell Element ) V.MISES > Y

14 Mechanical Concept  tresca = 2. Tresca Criterion max
Criterion for Yield 2. Tresca Criterion + max | max min |  tresca =   2 1  tresca > Y -

15 Mechanical Concept    # Shear Modulus Shear Stress l Shear Rate
= Shear force / Area l = G # Shear Modulus G   

16 Mechanical Concept   @ Von-Mises ; 0.6 Tresca ; 0.5 Shear Stress P
Shear Modulus = X Tensile Modulus @ Von-Mises ; 0.6 Tresca ; 0.5 전단면 위의 결과는 Yield Point 기준

17 Mechanical Concept Bending Stiffness = E I M M Flexural Rigidity
Neutral Axis y @ E : Tensile Modulus @ I : Moment of Inertia Compression x Tension

18 Mechanical Concept P M = P L Smax = M / Z Ymax = PL3/3EI L Moment Ymax
Position A M = P L Smax = M / Z Ymax = PL3/3EI M : Moment I : Moment of Inertia Smax : Max. Stress Ymax : Max. Deflection Z : = I / C ( Max. Moment & Stress ) P Ymax L C

19 Mechanical Concept P P P L L L 1 1/4 1/8
Examples for Moment with Various Boundary condition P P P L L L M A X I M U M S T R E S S 1 1/4 1/8 M A X I M U M S T R E S S P O S I T I O N at Center & Support at Support at Center

20 Mechanical Concept I = A y2 dA 100 100 274 36.5 4600 2.17
Moment of Inertia Neutral Axis y I = A y2 dA Moment of Inertia Deflection w t 100 100 r 274 36.5 h 4600 2.17 w=101.6, t=3.18, r=4.76, h=22.22

21 Mechanical Concept Examples for Moment of Inertia Thickness = L/4 L L L L L L L 100 wt wt wt wt L L L L L L L L 78 wt wt wt wt

22 Mechanical Concept L / L CV = T2 - T1
Coefficient of Thermal Expansion T1 L T2 L L Heating CV = L / L T2 - T1 ( Unit : mm/mm/degC ) Sthermal = CV X E)T2X ( T2 - T1 )

23 Mechanical Concept Examples for Coefficient of Thermal Expansion
Coefficient of Thermal Expansion (x10-5,in/in/C) Acetal ABS Nylon Polycarbonate Polyethylene Polyester PMMA PPO Polypropylene Polystyrene Polysulphone PVC 8.1 9.0 8.3 6.5 12.0 6.0 7.0 5.2 5.8 5.4 10.0

24 Mechanical Concept Creep ( under Load control ) l t = 0 t =  hour
High Temperature l APPARENT MODULUS TIME (HOURS)

25 Mechanical Concept l1 = l2
Stress Relaxation ( Under Displacement Control ) l1 High Temperature t = 0 l1 = l2 APPARENT MODULUS l2 TIME (HOURS) t =  hour

26 Mechanical Concept Examples for Tensile Creep Modulus Acetal ABS Nylon
Applied Load (lb/in2) Creep Modulus (73F,b/in2X103) 1 hr 100 hr 1000 hr Acetal ABS Nylon Polycarbonate Polyethylene Polyester PPO Polypropylene Polystyrene Polysulphone PVC 1500 1000 3000 4000 390 295 160 345 50 440 430 165 135 350 330 280 255 115 320 30 400 90 20 250 210 100 310 25 380 320 65 10 180

27 Mechanical Concept Fatigue Failure ( S-N Curve ) Load (kg/mm2 ) Cycle
Cyclic Loading Load (kg/mm2 ) Load 400 300 Time 200 100 103 104 105 106 Cycle

28 Mechanical Concept Examples for Fatigue Data Acrylic Acetal PC PVC ABS
Load ( lb/in2 ) Acrylic Acetal PC PVC ABS 12000 9000 6000 3000 102 103 104 105 106 107 Cycle

29 Mechanical Concept Impact Resistance ( Dynamic Failue )
Velocity =  m/sec Weight =  kg Plastics Impactor Load (kg) & Energy (kg.m) Time (msec) Load Energy

30 Mechanical Concept Factor of Impact Impact (continued) 1. Stiffness
2. Mass 3. Course & Velocity Impact Load Static Load Force (N) If TL > (5-6) Tn , Loading Type = Static Tn : Natural Frequency ) tL)1 tL)2 Time (sec)

31 Mechanical Concept Failure Type Impact (continued) Rapid Deformation
1. Elastic Deformation higher than Yield Strength 2. Permanent Deformation 3. Tearing 4. Fracture Rapid Deformation 1. Fast Loading Rate 2. Rate Sensitivity of Mechanical Properties

32 Coefficient of Friction
Mechanical Concept Coefficient of Friction When Max. Angle with no sliding Friction Force) F =  N S W @  : Corfficient of Friction (Static) N : Normal Force  : Angle of Friction S F N

33 Mechanical Concept Examples for Coefficient of Friction   s k s k
Steel on Polymer Polymer on Polymer s  k s  k Acetal Nylon Polycarbonate Polyethylene (LD) Polyethylene (HD) PET PTFE PVC PVDC 0.14 0.37 0.60 0.27 0.18 0.29 0.10 0.45 0.68 0.13 0.34 0.53 0.26 0.10 0.28 0.05 0.40 0.45 - 0.42 0.33 0.12 0.27 0.04 0.50 0.90 - 0.35 0.33 0.11 0.20 0.04 0.40 0.52  s : Static Friction Coefficient k  : Kinetic Friction Coefficient

34 P Mechanical Concept - Indentation Test Hardness - Stiffness
- Wear & Scratch if Hardness-A >> Hardness-B ( ex. Steel >> Polymer ) Abrasive Wear

35 Mechanical Concept Wear V V Abrasive Wear Adhesive Wear
Abrasive Wear Adhesive Wear Abrasive Resistance Acetal, Nylon, PC, PVC,PPO ABS, PP PE, PS


Download ppt "Mechanical Concept MOLDFLOW KOREA 1995.8."

Similar presentations


Ads by Google