Download presentation
Presentation is loading. Please wait.
1
CIPS80 v. 1.0
2
Data, Sites ECR—4 yrs of growth on 1 site
2m2y—6 yrs of growth on 1 sites CPT—8 yrs of growth on 3 sites LTSP—8 yrs of growth on 2 sites Fall River—10 years of growth on 1 site Herb1—20 yrs of growth on 2 sites Tanoak—25 years of growth on 2sites SMC type 3—up to 24 years of growth on 30 sites SMC type 2—up to 24 years of growth on 12 sites SMC type 1—up to 28 years of growth on 19 sites LOGS—up to 50 years of growth on 9 sites Blackrock—up to 58 years of growth on 11 control plots SWO-ORGANON—5 years of growth on 525 plots 2
3
Ht growth dataset Confined to only those trees with measured heights
All VMRC installations (n=48001) Fall River (n=25876) Tanoak (n=3665) LSTP—all trees to age 5, subset at age>5 (n=26307) SMC type 1 (n=19514) SMC type 2 (n=2248) SMC type 3 (n=32812) LOGS (n=2117) Blackrock (n=626) Height to crown base (necessary for estimating CCH) Measured at Fall River, subset of VMRC, SMC, LO, BR Estimated using HCB equation constructed from HCB-measured trees 3
4
Ht growth dataset, calculated variables
Potential height growth (Bruce SI50) Determine GEA of height, determine increment associated with GEA+period length Height to crown base (necessary for estimating CCH) Measured at Fall River, subset of VMRC, SMC, LO, BR Estimated using HCB equation constructed from HCB-measured trees Max crown width (necessary for CCH estimate) For trees with ht> 5 m, used Hann (1999) For trees with ht< 5m, fit an equation based on measurements at ECR and CPT estimating MCW from ht. Crown profile was parabolized to match profile of Hann estimates for large trees CCH (Crown closure at height of subject tree) Calculation eased by Hann DLL 4
5
Ht growth, summed cover, WMSE = 2.7241
I0* a0 + ((1-I0) * (PHG * (Exp(-Exp(a1+a2*HT) * weedcov0.5)) *a3* (Exp(a4* CCH)) * (1 - Exp(-a5 * CRa6)))) 5
6
Potential Ht growth Total age:
p1 = (50 + (Exp( / * ((SI / ) ^ )))) p2 = (1 / ( * (SI / 100) * (SI / 100) ^ * (SI / 100) ^ 3)) p3 = ( * (SI / 100) * (SI / 100) ^ * (SI / 100) ^ 3) gea1 = (((Log(ht / SI)) / (Log(4.5 / SI) / (((Exp( / * ((SI / ) ^ )))) ^ p3 - p1 ^ p3))) + (p1 ^ ( * (SI / 100) * (SI / 100) ^ * (SI / 100) ^ 3))) ^ p2 gea2 = gea1 + 1 6
7
Potential Ht growth htgea =
SI * Exp((Ln(4.5 / SI) / (((Exp( / * ((SI / ) ^ )))) ^ ( * (SI / 100) * (SI / 100) ^ * (SI / 100) ^ 3) - (50 + (Exp( / * ((SI / ) ^ )))) ^ ( * (SI / 100) * (SI / 100) ^ * (SI / 100) ^ 3))) * ((gea1) ^ ( * (SI / 100) * (SI / 100) ^ * (SI / 100) ^ 3) - (50 + (Exp( / * ((SI / ) ^ )))) ^ ( * (SI / 100) * (SI / 100) ^ * (SI / 100) ^ 3))) Hpot= htgea(t+1) – htgea(t) 7
8
Ht growth, effect by sumcover (%)
8
9
Dbh dataset Confined to all trees age 12 and under, and only those older trees with measured crown ratio All VMRC installations (n=27676) Fall River (n=24326) Tanoak (n=1215) LSTP—all trees to age 5, subset at age>5 (n=2730) SMC type 1 (n=31480) SMC type 2 (n=2322) SMC type 3 (n=39948) LOGS (n=1192) Blackrock (n=914) SWO-ORGANON (n=15396) 9
10
Dbh growth, summed cover, RMSE=8.7325
((b1)*((dbh+1)^b2))*exp(b3*(dbh/100)3) *exp(b4*(cr+0.2)/1.2) *exp(b5*log(si50)) *exp(b6*Iyoung*log(si50)) *exp(b7*(BA)^0.5) *exp(b8*((BAL)/(log(DBH+10))) *exp(b9*Inat*((BAL)/(log(DBH+10))) *(exp((1-Iold)*(-exp(b10+b11*ht)*sumcov^0.5)) 10
11
Dbhgr, effect of weed cover
11
12
Mortality, MSE=0.0224 SAS Proc NLIN
Mortality, MSE=0.0224 SAS Proc NLIN Used an annualizing compound interest formula. Selection based on minimization of MSE, comparison of measured to predicted mortality in systematic ranges of independent variables Probability of mort (p) =log ((p) / (1-p)) where p= c0+c1*(dbhless1)+c2*((crless1))+c3*log(balless )+c4*log(si50) Probability of mortality increases with: Increasing SI, BAL Decreasing HT, CR, BA 12
13
Height to crown base For static prediction of crown base
Data from five studies: Herb1: measured at 15 and 20 year remeasurements (n=4184) Fall River: measured at 6, 7, 8, and 10 year remeasurements (n=15367) SMC type 1, 2 and 3 (n=75021) LOGS (n=1314) Blackrock (n=334) 13
14
Height to crown base Model, undamaged (weighted by HCB^0.5) HCB= ht .
(1 + Exp(d0 + d1·Log (HT) + d2·Log(DFBA ) +d3·(dbh / ht)+ d4·CCFL +d5 · Log(SI50))) 14
15
Height to Crown base 15
16
CIPS80, Bakuzis output Bakuzis matrix graphically illustrates the compatibility of model output with the interdependent relationships typically found between the most common stand and tree descriptors of even-aged stands Output from DFSIM provides a proper example for comparison
17
CIPS80, Bakuzis output Vol vs. ht
18
CIPS80, Bakuzis output Vol vs. TPA
19
CIPS80, Bakuzis output Vol vs. qmd
20
CIPS80, Bakuzis output Vol vs. age
21
CIPS80, Bakuzis output BA vs TPA
22
CIPS80, Bakuzis output BA vs ht
23
CIPS80, Bakuzis output BA vs qmd
24
CIPS80, Bakuzis output BA vs age
25
CIPS80, Bakuzis output TPA vs. ht
26
CIPS80, Bakuzis output TPA vs. qmd
27
CIPS80, Bakuzis output TPA vs. age
28
CIPS80, Bakuzis output CR vs. ht
29
CIPS80, Bakuzis output Ht vs. age
30
CIPS80, Bakuzis output Scribner volume vs. height
31
CIPS80, Bakuzis output Scribner volume vs. age
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.