Download presentation
Presentation is loading. Please wait.
1
TRIGONOMETRIC EQUATIONS
TEACHER NOTE: Only degrees are used in these slides. Questions are also asked on radians, so teachers should make sure to show how to solve questions using radians in other examples.
2
Firstly recall the graphs of y = sin x, y = cos x and y = tan x.
Note: sin x is positive for 0º < x < 180º, and negative for 180º < x < 360º. y = sin x Note: cos x is positive for 0º ≤ x < 90º, and for 270º < x ≤ 360º and negative for 90º < x < 270º. y = cos x y = tan x Note: tan x is positive for 0° < x < 90º, and for 180º < x < 270º and negative for 90º < x < 180º. and for 270º < x < 360º.
3
S A T C We can summarise the information in the following diagram:
0º, 360º 180º 90º 270º sin +ve cos +ve tan +ve sin +ve cos –ve tan –ve sin –ve cos –ve tan +ve sin –ve cos +ve This can be simplified to show just the positive ratios: 0º, 360º 180º 90º 270º all +ve sin +ve tan +ve cos +ve A S T C TEACHER NOTE: CAST diagram used here – teacher could also use sin, cos and tan graphs here. or just:
4
S A T C The positive ratio diagram can be used to solve
trigonometric equations: Example 1: Solve cos x = 0.5; 0º ≤ x < 360º A S T C We can see that the cosine of an angle is positive in the two quadrants on the right, i.e. the 1st and 4th quadrants. Using: α = cos–1 0.5 = 60º Hence the solutions in the given range are: x = 60°, 360 – 60° so x = 60º, 300º
5
Example 2: Solve sin x = –0.5; –360º < x ≤ 360º
The sine of an angle is negative in the 3rd and 4th quadrants. α = sin–1 0.5 = 30º N.B. The negative is ignored to find the acute angle. Hence the solutions in the given range are: x = –150°, –30°, 210°, 330° In problems where the angle is not simply x, the given range will need to be adjusted.
6
Example 3: Solve 3 + 5 tan 2x = 0; 0º ≤ x ≤ 360º.
Firstly we need to make tan 2x the subject of the equation: – 3 5 tan 2x = The tangent of an angle is negative in the 2nd and 4th quadrants. = 30.96° The range must be adjusted for the angle 2x. i.e. 0° ≤ 2x ≤ 720°. Hence: 2x = 149.04°, 329.04°, 509.04°, 689.04°. x = 74.5°, 164.5°, °, 344.5°.
7
Example 4: Solve 2 sin (4x + 90º) – 1 = 0; 0 < x < 90º
The sine of an angle is positive in the 1st and 2nd quadrants. = 30º The range must be adjusted for the angle 4x + 90º. i.e. 0º < 4x < 360º 90º < 4x + 90º < 450º 4x + 90º = 150°, 390° 4x = 60º, 300º x = 15º, 75º
8
Example 5: Solve 6 sin2 x + sin x – 1 = 0; 0º ≤ x < 360º
A quadratic equation! It may help to abbreviate sin x with s: i.e. 6s2 + s – 1 = 0 Factorising this: (3s – 1)(2s + 1)= 0 α = 19.47º α = 30º So, x = 19.5°, 160.5°, 210°, 330°. (To nearest 0.1º.)
9
A S T C Summary of key points: To solve a Trigonometric Equation:
Re-arrange the equation to make sin, cos or tan of some angle the subject. Locate the quadrants in which the ratio is positive, or negative as required. A S T C Using: Adjust the range for the given angle. Read off all the solutions within the range.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.