Presentation is loading. Please wait.

Presentation is loading. Please wait.

Genetic Engineering تقنيات الهندسة الوراثية

Similar presentations


Presentation on theme: "Genetic Engineering تقنيات الهندسة الوراثية"— Presentation transcript:

1

2 Genetic Engineering تقنيات الهندسة الوراثية

3 الهندسة الوراثية ( الجينية ) Genetic Engineering
تعتبر الهندسة الوراثية أحد أهم فروع التقنية الحيوية والتي تختص بالتقنيات والأساليب التي يمكن عن طريقها إعادة تشكيل المادة الوراثية DNA بحذف أو إضافة أجزاء منها وذلك بهدف تغيير التركيب الوراثي للكائن الحي لإنتاج صفات وراثية جديدة ومحسنة. ويتوقع بمشيئة الله أن تساهم تطبيقات التقنية الحيوية في تذليل العقبات أمام العديد من التطبيقات الصحية المتعلقة بالرعاية الطبية و كذلك في الإنتاج الزراعي والحيواني والصناعي، كما يتوقع أن تساهم في تقديم الحلول العملية لكثير من المشاكل البيئية مثل التخلص من الملوثات البيئية .

4 الهندسة الوراثية ( الجينية ) Genetic Engineering
النسخ والاستنساخCloning:  يشتهر بين الناس كلمة الاستنساخ نظرا لارتباطها بخلق الكائنات أو إنشاء نُسخ منها.و لكن بالمصطلح الطبي فان كلمة نسخ أو استنساخ تعنى عملية إنشاء صورة طبقا الأصل من المادة التي يراد نسخها.و قد يكون النسخ لقطعة من الدي إن أي أو نسخ كائن حي  عندما قام الدكتور... و فريقه العلمي بنشر (Nature 385, , 1997 )خبر استنساخ النعجة "دولي" في احد مختبرات اسكتلندا ( مختبر روزيلين ) عام 1997 زاد اهتمام العالم بموضوع الاستنساخ و زاد الفضول العلمي في الحديث عن استنساخ الإنسان و فجر ذلك الخبر الكثير من التحفظات الدولية من كثير من المراكز الدينية و العلمية على الجانب الأخلاقي من عملية استنساخ الإنسان. 

5 الهندسة الوراثية ( الجينية ) Genetic Engineering
 و بعد ذلك اخبر أصبحت كلمة استنساخ تستخدم بين العامة في الحديث عن عملية خلق نسخة أخرى من الحيوان أو الإنسان و بذلك بدأ البس بين الكثيرين في معنى هذه الكلمة. و لا شك فان العلماء كانوا و مازالوا يستعملون هذه الكلمة في الإشارة إلى عملية صنع نسخة من أي مادة وراثية و ليس بالضرورة خلق أو نسخ كائن حي بالكامل. و لذلك فالعلماء يقسمون الاستنساخ أو النسخ إلى 3 أنواع :

6 الهندسة الوراثية ( الجينية ) Genetic Engineering
       نسخ أو استنساخ القطع من DNAعن طريق الهندسة الوراثية أو بما يعرف :  Recombinant DNA technology    الاستنساخ التكاثري أو الجنسي    Reproductive cloning     الاستنساخ العلاجي Therapeutic cloning

7 What is genetic engineering
Genetic engineering, also known as recombinant DNA technology, means altering the genes in a living organism to produce a Genetically Modified Organism (GMO) with a new genotype. الهندسة الوراثية ، وتعرف أيضاً بتكنولوجيا الحمض النووي المولف ، تعني تغيير الجينات في الكائنات الحية لإنتاج الكائنات المعدلة وراثيا ذات تركيب وراثى جديد. Gene technology – used in same way as genetic engineering, genetic fingerprinting – no manipulation of DNA

8 متى وكيف بدأت ثورة الهندسة الوراثية؟
بدأت ثورة التقنيات الحيوية وهندسة الجينات عام 1953 وهو العام الذي اكتشف فيه تركيب المادة الوراثية (DNA)

9 Principles of genetic engineering

10 Basic steps in genetic engineering الخطوات الأساسية في الهندسة الجينية
Isolate the gene عزل الجين 2.Insert it in a host using a vector دمجه في الكائن المستقبل (المضيف) باستخدام ناقل مناسب 3. Produce as many copies of the host as possible (cloning). إكثار ونسخ(كلونة) الجين عن طريق إكثار الكائن المضيف Genetic engineering is a very young discipline, and is only possible due to the development of techniques from the 1960s onwards. These techniques have been made possible from our greater understanding of DNA and how it functions following the discovery of its structure by Watson and Crick in 1953. Although the final goal of genetic engineering is usually the expression of a gene in a host, in fact most of the techniques and time in genetic engineering are spent isolating a gene and then cloning it. This table lists the techniques that we'll look at in detail. Need to explain some key terms first before we talk about how we would isolate the gene and clone it

11 Basic steps in genetic engineering الخطوات الأساسية في الهندسة الجينية

12 Step 1: Isolating the gene الخطوة الأولى: عزل الجين المطلوب بواسطة أنزيمات القطع المحددة
Gene is cut out using restriction endonucleases Molecular scissors Cut DNA at specific base sequence Hundreds available DNA cut at exactly the right place to isolate the gene Make a staggered cut, forming sticky ends The cut ends are "sticky" because they have short stretches of single-stranded DNA. These sticky ends will stick (or anneal) to another piece of DNA by complementary base pairing, but only if they have both been cut with the same restriction enzyme. Restriction enzymes are highly specific, and will only cut DNA at specific base sequences, 4-8 base pairs long.Restriction enzymes are produced naturally by bacteria as a defence against viruses (they "restrict" viral growth), but they are enormously useful in genetic engineering for cutting DNA at precise places ("molecular scissors"). Short lengths of DNA cut out by restriction enzymes are called restriction fragments. There are thousands of different restriction enzymes known, with over a hundred different recognition sequences. Restriction enzymes are named after the bacteria species they came from, so EcoR1 is from E. coli strain R. There are also RE that produce blunt ends – see page 483 RE’s in bacteria, protect against viruses by cutting up DNA

13 Step 2: Inserting gene into vector الخطوة الثانية: إدخال الجين إلى ناقل مناسب
Vector – molecule of DNA which is used to carry a foreign gene into a host cell الناقل: جزيء من الحمض النووي DNA يستخدم لحمل الجين المطلوب (المقتطع من كائن آخر) إلى خلية مضيفة. Now you have the gene that you wish to have duplicated, you need to put it into something else to make it produce what you want Most common vectors are bacterial plasmids and phage viruses What are they – plasmids – circular DNA that present in bacteria, double stranded A vector is needed because a length of DNA containing a gene on its own won’t actually do anything inside a host cell. Since it is not part of the cell’s normal genome it won’t be replicated when the cell divides, it won’t be expressed, and in fact it will probably be broken down pretty quickly. A vector gets round these problems by having these properties: It is big enough to hold the gene we want It is circular (or more accurately a closed loop), so that it is less likely to be broken down It contains control sequences, such as a transcription promoter, so that the gene will be replicated or expressed. It contain marker genes, so that cells containing the vector can be identified. Duplicate like the normal cell when cell replicates, remember Asexual reproduction so the DNA is not altered Good visual on page 486 of text book

14 مثال على أحد النواقل (بلازميد)
Popular cloning vector – 2 genes for resistance, several restriction sites

15

16 The diagram below shows how DNA fragments can be incorporated into a plasmid using restriction and ligase enzymes. The restriction enzyme used here (PstI) cuts the plasmid in the middle of one of the marker genes (we’ll see why this is useful later). The foreign DNA anneals with the plasmid and is joined covalently by DNA ligase to form a hybrid vector (in other words a mixture or hybrid of bacterial and foreign DNA). Several other products are also formed: some plasmids will simply re-anneal with themselves to re-form the original plasmid, and some DNA fragments will join together to form chains or circles. Theses different products cannot easily be separated, but it doesn’t matter, as the marker genes can be used later to identify the correct hybrid vector

17 Step 3: inserting vector into host الخطوة الثالثة : إدخال الناقل لخلية مضيفة
First of all, the host plasmids are removed for preparation for the hosts to receive recombinant plasmids Possible treatments that can help the hosts to take up the vectors include; shocking, temperature shock, calcium ions – all help the cells to uptake the plasmids Not all bacteria will take up recombinant plasmids so they need to be identified and isolated These are needed to identify cells that have successfully taken up a vector and so become transformed. With most of the techniques above less than 1% of the cells actually take up the vector, so a marker is needed to distinguish these cells from all the others. A common marker, used in plasmids, is a gene for resistance to an antibiotic such as tetracycline. Bacterial cells taking up this plasmid are resistant to this antibiotic. So if the cells are grown on a medium containing tetracycline all the normal untransformed cells (99%) will die. Only the 1% transformed cells will survive, and these can then be grown and cloned on another plate.

18 Replica plating is a simple technique for making an exact copy of an agar plate. A pad of sterile cloth the same size as the plate is pressed on the surface of an agar plate with bacteria growing on it. Some cells from each colony will stick to the cloth. If the cloth is then pressed onto a new agar plate, some cells will be deposited and colonies will grow in exactly the same positions on the new plate. This technique has a number of uses, but the most common use in genetic engineering is to help solve another problem in identifying transformed cells. This problem is to distinguish those cells that have taken up a hybrid plasmid vector (with a foreign gene in it) from those cells that have taken up plasmids without the gene. This is where the second marker gene (for resistance to ampicillin) is used. If the foreign gene is inserted into the middle of this marker gene, the marker gene is disrupted and won't make its proper gene product. So cells with the hybrid plasmid will be killed by ampicillin, while cells with the normal plasmid will be immune to ampicillin. Since this method of identification involves killing the cells we want, we must first make a master agar plate and then make a replica plate of this to test for ampicillin resistance. Once the colonies of cells containing the correct hybrid plasmid vector have been identified, the appropriate colonies on the master plate can be selected and grown on another plate.

19 أنسولين بشري مُنتج بواسطة البكتيريا
Figure 12.7A Human insulin produced by bacteria. Human insulin produced by bacteria أنسولين بشري مُنتج بواسطة البكتيريا عن طريق تقنية الهندسة الجينية (الاستنساخ (Cloning 20

20 Steps to produce a recombinant DNA in the colon bacteria E. Coli
(by genetic engineering technolog( خطوات انتاج DNA اتحادي (recombinant) في بكتيريا القولون E . Coli (تقنية الهندسة الوراثية)

21 B- The plasmids can be isolated from bacteria that have been ruptured
أ و A- Each E. coli cell contains one chromosome and several small circlets of DNA called plasmids. أ. كل خلية بكتيرية تحتوي على كروموزوم واحد وعدد من حلقات DNA الصغيرة المسماة بالبلازميدات (plasmids) B- The plasmids can be isolated from bacteria that have been ruptured ب. يمكن عزل البلازميدات من البكتيريا بعد تمزيق الجدار الخلوي. .

22 C- Restriction enzyme can break the plasmid at specific location
أ و C- Restriction enzyme can break the plasmid at specific location ج. أحد الانزيمات المحددة القطع (Restriction enzyme) له القدرة على كسر البلازميد في نقطة معينة. D-The same restriction enzyme can be used to remove a segment of DNA –say the insulin gene-from a human cell. د. نفس الانزيم يمكن استخدامه لاقتطاع جزء معين من الـ DNA مثلاً الجين الموجه لإنتاج الانسولين من خلية إنسانية. .

23 أ و E- The human gene is inserted into the E. coli plasmids by ligase enzyme and the result, is “recombinant” DNA. هـ. يتم إدخال الجين الانساني ببلازميد البكتيريا بواسطة الإنزيم اللاحم والنتيجة هي DNA اتحادي (recombinant) F. The recombinant plasmids can now be reinserted into E. coli cells where they will subsequently be reproduced, each time the bacterium divides. و. يمكن ادخال البلازميد في خلايا بكتيرية جديدة حيث يتضاعف تباعاً في كل انقسام بكتيري ويجعل البكتيريا تنتج الانسولين الانساني.


Download ppt "Genetic Engineering تقنيات الهندسة الوراثية"

Similar presentations


Ads by Google