Download presentation
Presentation is loading. Please wait.
Published byRoger St-Amand Modified over 6 years ago
1
A Gentle Introduction to Bilateral Filtering and its Applications
“Fixing the Gaussian Blur”: the Bilateral Filter Sylvain Paris – MIT CSAIL
2
Blur Comes from Averaging across Edges
* input output * * Same Gaussian kernel everywhere.
3
Bilateral Filter No Averaging across Edges
[Aurich 95, Smith 97, Tomasi 98] * input output * * The kernel shape depends on the image content.
4
Bilateral Filter Definition: an Additional Edge Term
Same idea: weighted average of pixels. normalization factor new space weight not new range weight I new
5
Illustration a 1D Image 1D image = line of pixels
Better visualized as a plot pixel intensity pixel position
6
Gaussian Blur and Bilateral Filter
p q space space Bilateral filter [Aurich 95, Smith 97, Tomasi 98] p range q space range normalization space
7
Bilateral Filter on a Height Field
output input reproduced from [Durand 02]
8
Space and Range Parameters
space σs : spatial extent of the kernel, size of the considered neighborhood. range σr : “minimum” amplitude of an edge
9
Influence of Pixels Only pixels close in space and in range are considered. space range p
10
Exploring the Parameter Space
σr = ∞ (Gaussian blur) σr = 0.1 σr = 0.25 input σs = 2 σs = 6 σs = 18
11
Varying the Range Parameter
σr = ∞ (Gaussian blur) σr = 0.1 σr = 0.25 input σs = 2 σs = 6 σs = 18
12
input
13
σr = 0.1
14
σr = 0.25
15
σr = ∞ (Gaussian blur)
16
Varying the Space Parameter
σr = ∞ (Gaussian blur) σr = 0.1 σr = 0.25 input σs = 2 σs = 6 σs = 18
17
input
18
σs = 2
19
σs = 6
20
σs = 18
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.