Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 7 Atomic Physics.

Similar presentations


Presentation on theme: "Chapter 7 Atomic Physics."β€” Presentation transcript:

1 Chapter 7 Atomic Physics

2 SchrΓΆdinger Equation in 3D infinite square well
βˆ’ ℏ 2 2π‘š πœ• 2 πœ“ πœ• π‘₯ πœ• 2 πœ“ πœ• 𝑦 πœ• 2 πœ“ πœ• 𝑧 2 +π‘‰πœ“=πΈπœ“ πœ“ π‘₯,𝑦,𝑧 = πœ“ 1 π‘₯ πœ“ 2 𝑦 πœ“ 3 𝑧 πœ“ π‘₯,𝑦,𝑧 =𝐴𝑠𝑖𝑛 π‘˜ 1 π‘₯ 𝑠𝑖𝑛 π‘˜ 2 𝑦 𝑠𝑖𝑛 π‘˜ 3 𝑧 𝐸 𝑛 1 𝑛 2 𝑛 3 = ℏ 2 πœ‹ 2 2π‘š 𝑛 𝐿 𝑛 𝐿 𝑛 𝐿 3 2 π‘˜ 𝑖 = 𝑛 𝑖 πœ‹ 𝐿 𝑖

3 SchrΓΆdinger Equation in 3D Spherical Coordinate
Electrons in hydrogen-like atom βˆ’ ℏ 2 2πœ‡ 1 π‘Ÿ 2 πœ• πœ•π‘Ÿ π‘Ÿ 2 πœ•πœ“ πœ•π‘Ÿ βˆ’ ℏ 2 2πœ‡ 1 π‘Ÿ π‘ π‘–π‘›πœƒ πœ• πœ•πœƒ π‘ π‘–π‘›πœƒ πœ•πœ“ πœ•πœƒ 𝑠𝑖𝑛 2 πœƒ πœ• 2 πœ“ πœ• πœ™ 2 +π‘‰πœ“=πΈπœ“ 𝑉 π‘Ÿ =βˆ’ π‘π‘˜ 𝑒 2 π‘Ÿ

4 SchrΓΆdinger Equation in 3D Spherical Coordinate
βˆ’ ℏ 2 2πœ‡ 1 π‘Ÿ 2 πœ• πœ•π‘Ÿ π‘Ÿ 2 πœ•πœ“ πœ•π‘Ÿ βˆ’ ℏ 2 2πœ‡ 1 π‘Ÿ π‘ π‘–π‘›πœƒ πœ• πœ•πœƒ π‘ π‘–π‘›πœƒ πœ•πœ“ πœ•πœƒ 𝑠𝑖𝑛 2 πœƒ πœ• 2 πœ“ πœ• πœ™ 2 βˆ’ π‘π‘˜ 𝑒 2 π‘Ÿ πœ“=πΈπœ“ πœ“ π‘Ÿ,πœƒ,πœ™ =𝑅 π‘Ÿ 𝑓 πœƒ 𝑔 πœ™ 1 𝑅 𝑑 π‘‘π‘Ÿ π‘Ÿ 2 𝑑𝑅 π‘‘π‘Ÿ + 2πœ‡ π‘Ÿ 2 ℏ 2 πΈβˆ’π‘‰ =𝑙 𝑙+1 1 𝑔 𝑑 2 𝑔 𝑑 πœ™ 2 =βˆ’ π‘š 2 𝑔 π‘š πœ™ = 𝑒 π‘–π‘šπœ™ 𝑓 π‘™π‘š πœƒ = π‘ π‘–π‘›πœƒ π‘š 2 𝑙 𝑙! 𝑑 𝑑 π‘π‘œπ‘ πœƒ 𝑙+ π‘š π‘π‘œπ‘  2 πœƒβˆ’1 𝑙 𝑙 𝑙+1 𝑠𝑖𝑛 2 πœƒ+ π‘ π‘–π‘›πœƒ 𝑓 𝑑 π‘‘πœƒ π‘ π‘–π‘›πœƒ 𝑑𝑓 π‘‘πœƒ = π‘š 2

5 SchrΓΆdinger Equation in 3D Spherical Coordinate
π‘Œ π‘™π‘š πœƒ,πœ™ = 𝑓 π‘™π‘š πœƒ 𝑔 πœ™ = 𝑒 π‘–π‘šπœ™ π‘ π‘–π‘›πœƒ π‘š 2 𝑙 𝑙! 𝑑 𝑑 π‘π‘œπ‘ πœƒ 𝑙+ π‘š π‘π‘œπ‘  2 πœƒβˆ’1 𝑙 πœ“ π‘Ÿ,πœƒ,πœ™ = 𝑅 𝑛𝑙 π‘Ÿ π‘Œ π‘™π‘š πœƒ,πœ™ See Table 7-1 for some of the π‘Œ π‘™π‘š πœƒ,πœ™ functions

6 Radial Function of SchrΓΆdinger Equation
1 𝑅 𝑑 π‘‘π‘Ÿ π‘Ÿ 2 𝑑𝑅 π‘‘π‘Ÿ + 2πœ‡ π‘Ÿ 2 ℏ 2 πΈβˆ’π‘‰ =𝑙 𝑙+1 βˆ’ ℏ 2 2πœ‡ π‘Ÿ 2 𝑑 π‘‘π‘Ÿ π‘Ÿ 2 𝑑𝑅 π‘Ÿ π‘‘π‘Ÿ + βˆ’ π‘˜π‘ 𝑒 2 π‘Ÿ + ℏ 2 𝑙 𝑙+1 2πœ‡ π‘Ÿ 2 𝑅 π‘Ÿ =𝐸𝑅 π‘Ÿ 𝐸 𝑛 =βˆ’ π‘˜π‘ 𝑒 2 ℏ 2 πœ‡ 2 𝑛 2 =βˆ’ 𝑍 2 𝐸 1 𝑛 2

7 Radial Function of SchrΓΆdinger Equation
See Table 7-2 for more 𝑅 𝑛𝑙 π‘Ÿ functions 𝑅 10 = 2 π‘Ž 𝑒 βˆ’π‘Ÿ/ π‘Ž 0 𝑅 20 = π‘Ž βˆ’ π‘Ÿ 2 π‘Ž 0 𝑒 βˆ’π‘Ÿ/ 2π‘Ž 0 𝑅 21 = π‘Ž π‘Ÿ π‘Ž 0 𝑒 βˆ’π‘Ÿ/ 2π‘Ž 0

8 Summary of the Quantum Numbers
πœ“ π‘Ÿ,πœƒ,πœ™ = 𝑅 𝑛𝑙 π‘Ÿ π‘Œ π‘™π‘š πœƒ,πœ™ Principal quantum number: 𝑛=1,2,3,… Angular momentum (orbital) quantum number: 𝑙=0,1,2,3,…,(π‘›βˆ’1) Magnetic quantum number: π‘š=βˆ’π‘™,βˆ’π‘™+1,…,βˆ’2,βˆ’1,0,1,2,…,π‘™βˆ’1,𝑙

9 Periodic Table and Quantum Numbers

10 Angular Momentum βˆ’ ℏ π‘ π‘–π‘›πœƒ πœ• πœ•πœƒ π‘ π‘–π‘›πœƒ πœ• πœ•πœƒ 𝑠𝑖𝑛 2 πœƒ πœ• 2 πœ• πœ™ 2 π‘Œ π‘™π‘š πœƒ,πœ™ =𝑙 𝑙+1 ℏ 2 π‘Œ π‘™π‘š πœƒ,πœ™ 𝐿 2 π‘œπ‘ π‘Œ π‘™π‘š πœƒ,πœ™ =𝑙 𝑙+1 ℏ 2 π‘Œ π‘™π‘š πœƒ,πœ™ = 𝐿 2 π‘Œ π‘™π‘š πœƒ,πœ™ 𝐿= 𝑙 𝑙+1 ℏ 𝐿 𝑧 =π‘šβ„

11 Spectroscopy transitions and selection rules
βˆ†π‘š=0 π‘œπ‘Ÿ Β±1 βˆ†π‘™=Β±1

12 Electron Spin 𝑆 =𝑆= 𝑠 𝑠+1 ℏ π‘š 𝑠 =Β± 1 2 ℏ 𝑠= 1 2

13 Complete Hydrogen Atom Wave Function
πœ“ 100 π‘Ÿ,πœƒ,πœ™ = 𝐢 100 𝑅 10 π‘Ÿ π‘Œ 00 πœƒ,πœ™ πœ“= 𝐢 1 πœ“ 𝑛𝑙 π‘š 𝑙 π‘š 𝑠1 + 𝐢 2 πœ“ 𝑛𝑙 π‘š 𝑙 π‘š 𝑠2 πœ“= 𝐢 1 πœ“ 100+1/2 + 𝐢 2 πœ“ 100βˆ’1/2 Pauli Exclusion Principle: Valid for particles with half integer spin (Fermions) No more than one electron may occupy a given quantum state specified by a particular set of single-particle quantum numbers, n, l, ml, ms

14 Magnetic Moment Define: Magnetic dipole moment πœ‡ =𝐼 𝐴
A loop of current is a magnetic dipole moment!! Electrons in an atom Orbital motion: πœ‡ = π‘ž 2 π‘š 𝑒 𝐿 πœ‡ =βˆ’ 𝑒 2 π‘š 𝑒 𝐿

15 Magnetic Moment of Electron Orbital
πœ‡ 𝐿 = 𝑒 2 π‘š 𝑒 𝐿= πœ‡ 𝐡 ℏ 𝐿= πœ‡ 𝐡 ℏ 𝑙 𝑙+1 ℏ= 𝑙 𝑙+1 πœ‡ 𝐡 In general: πœ‡ 𝐡 = 𝑒ℏ 2 π‘š 𝑒 πœ‡= 𝑙 𝑙+1 𝑔 πœ‡ 𝐡 Bohr magneton: πœ‡ =βˆ’ 𝑔 πœ‡ 𝐡 ℏ 𝐿 πœ‡ 𝑧 =βˆ’π‘šπ‘” πœ‡ 𝐡 πœ‡ 𝐿𝑧 =βˆ’ 𝑒ℏ 2 π‘š 𝑒 π‘š=βˆ’π‘š πœ‡ 𝐡 Gyromagnetic ratio (g-factor): πœ‡ 𝐿 = 𝑙 𝑙+1 πœ‡ 𝐡 𝑔 could be 𝑔 𝐿 or 𝑔 𝑆 πœ‡ 𝐿𝑧 =βˆ’ πœ‡ 𝐡 π‘š 𝑔 𝐿 =1

16 Magnetic Moment of Electron Spin
πœ‡ 𝑆 = 𝑔 𝑆 πœ‡ 𝐡 ℏ 𝑆= 𝑔 𝑆 𝑠 𝑠+1 πœ‡ 𝐡 = 𝑔 𝑆 πœ‡ 𝐡 πœ‡ 𝑆 =βˆ’ 𝑔 𝑆 πœ‡ 𝐡 ℏ 𝑆 πœ‡ 𝑆𝑧 =βˆ’ 𝑔 𝑆 π‘š 𝑠 πœ‡ 𝐡 =Β± 1 2 𝑔 𝑆 πœ‡ 𝐡 From Stern-Gerlach experiment: 𝑔 𝑆 =

17 Total Angular Momentum
𝐽 = 𝐿 + 𝑆 𝐽 = 𝑗 𝑗+1 ℏ 𝑗=𝑙+𝑠 or 𝑗= π‘™βˆ’π‘  𝐽 𝑧 = π‘š 𝑗 ℏ Total angular momentum of two electrons with different L 𝐽 = 𝐿 𝐿 2 𝑗= 𝑙 1 + 𝑙 2 , 𝑙 1 + 𝑙 2 βˆ’1, …, 𝑙 1 βˆ’ 𝑙 2

18 Magnetic Moment in Magnetic Field
𝜏 = πœ‡ Γ— 𝐡 π‘ˆ π‘š =βˆ’ πœ‡ βˆ™ 𝐡

19 Stern-Gerlach Experiment
𝐹 =βˆ’π›» π‘ˆ π‘š =βˆ’π›» βˆ’ πœ‡ βˆ™ 𝐡 𝐹 𝑧 = πœ‡ 𝑧 𝑑𝐡/𝑑𝑧 =βˆ’π‘šπ‘” πœ‡ 𝐡 𝑑𝐡/𝑑𝑧

20 Stern-Gerlach Experiment
Reality for Silver (l = 0): Expected: Electron Spin made it so! l = 1 l = 0

21 Electron Configurations and Hund’s Rule
Ag: [Kr] 4d10 5s1 Hund’s Rule (finding the ground state electron configuration): Maximize total electron spin quantum number Maximize total orbital quantum number For the outermost subshell, if it is half-filled or less, lowest J has the lowest energy; otherwise, the highest J has the lowest energy. O: [He] 2s2 2p4 N: [He] 2s2 2p3 C: [He] 2s2 2p2

22

23 Spectroscopic Notation
𝑛 2𝑠+1 𝑙 𝑗 1 2 𝑆 1/2 (n=1; l=0; s=1/2; j=1/2) 2 2 𝑆 1/2 (n=2; l=0; s=1/2; j=1/2) 2 2 𝑃 1/2 (n=2; l=1; s=1/2; j=1/2) 2 2 𝑃 3/2 (n=2; l=1; s=1/2; j=3/2)

24 Spin-Orbit Coupling π‘ˆ π‘š =βˆ’ πœ‡ βˆ™ 𝐡


Download ppt "Chapter 7 Atomic Physics."

Similar presentations


Ads by Google