Download presentation
Presentation is loading. Please wait.
1
and the phases of matter
Quantum entanglement and the phases of matter Colloquium Ehrenfestii Leiden University May 9, 2012 HARVARD sachdev.physics.harvard.edu
2
Max Metlitski Liza Huijse Brian Swingle
3
Sommerfeld-Bloch theory of metals, insulators, and superconductors:
many-electron quantum states are adiabatically connected to independent electron states
4
Band insulators Sommerfeld-Bloch theory of
metals, insulators, and superconductors: many-electron quantum states are adiabatically connected to independent electron states Band insulators An even number of electrons per unit cell
5
Metals Sommerfeld-Bloch theory of
metals, insulators, and superconductors: many-electron quantum states are adiabatically connected to independent electron states Metals An odd number of electrons per unit cell
6
Superconductors Sommerfeld-Bloch theory of
metals, insulators, and superconductors: many-electron quantum states are adiabatically connected to independent electron states Superconductors
7
Modern phases of quantum matter
Not adiabatically connected to independent electron states:
8
many-particle, long-range quantum entanglement
Modern phases of quantum matter Not adiabatically connected to independent electron states: many-particle, long-range quantum entanglement
9
superposition and entanglement
Quantum superposition and entanglement
10
Quantum Entanglement: quantum superposition with more than one particle
11
Quantum Entanglement: quantum superposition with more than one particle
Hydrogen atom:
12
Quantum Entanglement: quantum superposition with more than one particle
Hydrogen atom: Hydrogen molecule: _ = Superposition of two electron states leads to non-local correlations between spins
13
Quantum Entanglement: quantum superposition with more than one particle
_
14
Quantum Entanglement: quantum superposition with more than one particle
_
15
Quantum Entanglement: quantum superposition with more than one particle
_
16
Quantum Entanglement: quantum superposition with more than one particle
_ Einstein-Podolsky-Rosen “paradox”: Non-local correlations between observations arbitrarily far apart
17
Mott insulator: Triangular lattice antiferromagnet
Nearest-neighbor model has non-collinear Neel order
18
Mott insulator: Triangular lattice antiferromagnet
19
Mott insulator: Triangular lattice antiferromagnet
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)
20
Mott insulator: Triangular lattice antiferromagnet
Spin liquid obtained in a generalized spin model with S=1/2 per unit cell = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).
21
Mott insulator: Triangular lattice antiferromagnet
Spin liquid obtained in a generalized spin model with S=1/2 per unit cell = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).
22
Mott insulator: Triangular lattice antiferromagnet
Spin liquid obtained in a generalized spin model with S=1/2 per unit cell = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).
23
Mott insulator: Triangular lattice antiferromagnet
Spin liquid obtained in a generalized spin model with S=1/2 per unit cell = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).
24
Mott insulator: Triangular lattice antiferromagnet
Spin liquid obtained in a generalized spin model with S=1/2 per unit cell = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).
25
Mott insulator: Triangular lattice antiferromagnet
Spin liquid obtained in a generalized spin model with S=1/2 per unit cell = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).
26
Topological order in the Z2 spin liquid ground state
B A
27
Topological order in the Z2 spin liquid ground state
B A
28
B A Topological order in the Z2 spin liquid ground state
M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, (2006); A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, (2006); Y. Zhang, T. Grover, and A. Vishwanath, Phys. Rev. B 84, (2011).
29
Promising candidate: the kagome antiferromagnet
Numerical evidence for a gapped spin liquid: Simeng Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011). Young Lee, APS meeting, March 2012
30
superposition and entanglement
Quantum superposition and entanglement
31
superposition and entanglement Quantum critical points of electrons
in crystals String theory Black holes
32
superposition and entanglement Quantum critical points of electrons
in crystals String theory Black holes
33
Examine ground state as a function of
Spinning electrons localized on a square lattice S=1/2 spins J J/ Examine ground state as a function of
34
Spinning electrons localized on a square lattice
J J/ At large ground state is a “quantum paramagnet” with spins locked in valence bond singlets
35
Spinning electrons localized on a square lattice
J J/
36
Spinning electrons localized on a square lattice
J J/
37
Spinning electrons localized on a square lattice
J J/ No EPR pairs
39
Pressure in TlCuCl3 A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, Journal of the Physical Society of Japan, 73, (2004).
40
TlCuCl3 An insulator whose spin susceptibility vanishes exponentially as the temperature T tends to zero.
41
Quantum paramagnet at ambient pressure
TlCuCl3 Quantum paramagnet at ambient pressure
42
Neel order under pressure
TlCuCl3 Neel order under pressure A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, Journal of the Physical Society of Japan, 73, (2004).
46
Spin waves
47
Spin waves
48
Spin waves
49
Excitations of TlCuCl3 with varying pressure
Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, (2008)
50
Excitations of TlCuCl3 with varying pressure
Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, (2008)
51
Excitations of TlCuCl3 with varying pressure
Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, (2008)
52
Excitations of TlCuCl3 with varying pressure
S. Sachdev, arXiv: Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, (2008)
54
Quantum critical point with non-local entanglement in spin wavefunction
55
Tensor network representation of entanglement
at quantum critical point M. Levin and C. P. Nave, Phys. Rev. Lett. 99, (2007) G. Vidal, Phys. Rev. Lett. 99, (2007) F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett. 96, (2006)
56
Entanglement entropy d A
57
Most links describe entanglement within A
Entanglement entropy d A Most links describe entanglement within A
58
Links overestimate entanglement between A and B
Entanglement entropy d A Links overestimate entanglement between A and B
59
Entanglement entropy =
d A Entanglement entropy = Number of links on optimal surface intersecting minimal number of links.
60
Long-range entanglement in a CFT3
B A M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Physical Review B 80, (2009). H. Casini, M. Huerta, and R. Myers, JHEP 1105:036, (2011) I. Klebanov, S. Pufu, and B. Safdi, arXiv:
61
quantum critical point
Characteristics of quantum critical point
62
quantum critical point
Characteristics of quantum critical point
63
quantum critical point
Characteristics of quantum critical point
64
quantum critical point
Characteristics of quantum critical point
65
superposition and entanglement Quantum critical points of electrons
in crystals String theory Black holes
66
superposition and entanglement Quantum critical points of electrons
in crystals String theory Black holes
67
superposition and entanglement Quantum critical points of electrons
in crystals String theory Black holes
68
String theory
73
d Tensor network representation of entanglement
at quantum critical point d
74
String theory near a D-brane d Emergent direction of AdS4
75
d Tensor network representation of entanglement
at quantum critical point d Emergent direction of AdS4 Brian Swingle, arXiv:
76
Entanglement entropy =
d A Entanglement entropy = Number of links on optimal surface intersecting minimal number of links. Emergent direction of AdS4
77
r Quantum matter with long-range entanglement
Emergent holographic direction J. McGreevy, arXiv
78
r A Quantum matter with long-range entanglement
Emergent holographic direction
79
r A Area measures entanglement entropy Quantum matter with
long-range entanglement A Area measures entanglement entropy r Emergent holographic direction S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, (2006).
80
superposition and entanglement Quantum critical points of electrons
in crystals String theory Black holes
81
superposition and entanglement Quantum critical points of electrons
CFT3 Quantum critical points of electrons in crystals String theory Black holes
82
superposition and entanglement Quantum critical points of electrons
in crystals String theory Black holes
83
Quantum critical point with non-local entanglement in spin wavefunction
86
Thermally excited spin waves Thermally excited triplon particles
87
Thermally excited Thermally excited spin waves triplon particles
Short-range entanglement Short-range entanglement
88
Excitations of a ground state with long-range entanglement
Thermally excited spin waves Thermally excited triplon particles
89
Needed: Accurate theory of quantum critical spin dynamics
Excitations of a ground state with long-range entanglement Needed: Accurate theory of quantum critical spin dynamics Thermally excited spin waves Thermally excited triplon particles
90
A 2+1 dimensional system at its quantum critical point
String theory at non-zero temperatures A 2+1 dimensional system at its quantum critical point
91
String theory at non-zero temperatures
A 2+1 dimensional system at its quantum critical point A “horizon”, similar to the surface of a black hole !
92
Objects so massive that light is gravitationally bound to them.
Black Holes Objects so massive that light is gravitationally bound to them.
93
Objects so massive that light is gravitationally bound to them.
Black Holes Objects so massive that light is gravitationally bound to them. In Einstein’s theory, the region inside the black hole horizon is disconnected from the rest of the universe.
94
Black Holes + Quantum theory
Around 1974, Bekenstein and Hawking showed that the application of the quantum theory across a black hole horizon led to many astonishing conclusions
95
Quantum Entanglement across a black hole horizon
_
96
Quantum Entanglement across a black hole horizon
_
97
Quantum Entanglement across a black hole horizon
_ Black hole horizon
98
Quantum Entanglement across a black hole horizon
_ Black hole horizon
99
Quantum Entanglement across a black hole horizon
There is a non-local quantum entanglement between the inside and outside of a black hole Black hole horizon
100
Quantum Entanglement across a black hole horizon
There is a non-local quantum entanglement between the inside and outside of a black hole Black hole horizon
101
This entanglement leads to a black hole temperature
Quantum Entanglement across a black hole horizon There is a non-local quantum entanglement between the inside and outside of a black hole This entanglement leads to a black hole temperature (the Hawking temperature) and a black hole entropy (the Bekenstein entropy)
102
A 2+1 dimensional system at its quantum critical point
String theory at non-zero temperatures A 2+1 dimensional system at its quantum critical point A “horizon”, whose temperature and entropy equal those of the quantum critical point
103
Friction of quantum criticality = waves falling into black brane
String theory at non-zero temperatures A 2+1 dimensional system at its quantum critical point A “horizon”, whose temperature and entropy equal those of the quantum critical point Friction of quantum criticality = waves falling into black brane
104
A 2+1 dimensional system at its quantum critical point
String theory at non-zero temperatures A 2+1 dimensional system at its quantum critical point An (extended) Einstein-Maxwell provides successful description of dynamics of quantum critical points at non-zero temperatures (where no other methods apply) A “horizon”, whose temperature and entropy equal those of the quantum critical point
105
superposition and entanglement Quantum critical points of electrons
in crystals String theory Black holes
106
superposition and entanglement Quantum critical points of electrons
in crystals String theory Black holes
107
Metals, “strange metals”, and high temperature superconductors
Insights from gravitational “duals”
108
High temperature superconductors
109
a new class of high temperature superconductors
Iron pnictides: a new class of high temperature superconductors Ishida, Nakai, and Hosono arXiv: v1
110
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda,
AF S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)
111
AF Short-range entanglement in state with Neel (AF) order
S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)
112
AF Superconductor Bose condensate of pairs of electrons
Short-range entanglement S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)
113
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda,
AF Ordinary metal (Fermi liquid) S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)
114
Sommerfeld-Bloch theory of ordinary metals
Momenta with electron states occupied Momenta with electron states empty
115
Key feature of the theory:
Sommerfeld-Bloch theory of ordinary metals Key feature of the theory: the Fermi surface 115
116
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda,
AF Ordinary metal (Fermi liquid) S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)
117
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda,
Strange Metal AF S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)
119
Ordinary Metal
120
Strange Metal Ordinary Metal
121
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda,
Strange Metal AF S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)
122
Excitations of a ground state with long-range entanglement
Strange Metal AF S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)
123
Key (difficult) problem:
Describe quantum critical points and phases of systems with Fermi surfaces leading to metals with novel types of long-range entanglement +
124
Challenge to string theory: Describe quantum critical points
and phases of metals
125
Challenge to string theory: Describe quantum critical points
and phases of metals Can we obtain gravitational theories of superconductors and ordinary Sommerfeld-Bloch metals ?
126
Challenge to string theory: Describe quantum critical points
and phases of metals Can we obtain gravitational theories of superconductors and ordinary Sommerfeld-Bloch metals ? Yes T. Nishioka, S. Ryu, and T. Takayanagi, JHEP 1003, 131 (2010) G. T. Horowitz and B. Way, JHEP 1011, 011 (2010) S. Sachdev, Physical Review D 84, (2011)
127
Challenge to string theory: Describe quantum critical points
and phases of metals Do the “holographic” gravitational theories also yield metals distinct from ordinary Sommerfeld-Bloch metals ?
128
Challenge to string theory: Describe quantum critical points
and phases of metals Do the “holographic” gravitational theories also yield metals distinct from ordinary Sommerfeld-Bloch metals ? Yes, lots of them, with many “strange” properties ! S.-S. Lee, Phys. Rev. D 79, (2009); M. Cubrovic, J. Zaanen, and K. Schalm, Science 325, 439 (2009); T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: ; F. Denef, S. A. Hartnoll, and S. Sachdev, Phys. Rev. D 80, (2009)
129
Challenge to string theory: Describe quantum critical points
and phases of metals How do we discard artifacts, and choose the holographic theories applicable to condensed matter physics ?
130
Challenge to string theory: Describe quantum critical points
and phases of metals How do we discard artifacts, and choose the holographic theories applicable to condensed matter physics ? Choose the theories with the proper entropy density Checks: these theories also have the proper entanglement entropy and Fermi surface size ! N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv: L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, (2012)
131
Entanglement entropy of Fermi surfaces
B A Y. Zhang, T. Grover, and A. Vishwanath, Physical Review Letters 107, (2011)
132
r Quantum matter with long-range entanglement
Emergent holographic direction J. McGreevy, arXiv
133
Quantum matter with long-range entanglement r Emergent holographic direction Abandon conformal invariance, and only require scale invariance at long lengths and times.....
134
L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
135
L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
137
L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
138
N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023
140
Conclusions Phases of matter with long-range quantum entanglement are prominent in numerous modern materials.
141
Simplest examples of long-range entanglement are in
Conclusions Simplest examples of long-range entanglement are in insulating antiferromagnets: Z2 spin liquids and quantum critical points
142
Conclusions More complex examples in metallic states are experimentally ubiquitous, but pose difficult strong-coupling problems to conventional methods of field theory
143
String theory and gravity in emergent dimensions
Conclusions String theory and gravity in emergent dimensions offer a remarkable new approach to describing states with long-range quantum entanglement.
144
String theory and gravity in emergent dimensions
Conclusions String theory and gravity in emergent dimensions offer a remarkable new approach to describing states with long-range quantum entanglement. Much recent progress offers hope of a holographic description of “strange metals”
145
Emergent holographic direction
anti-de Sitter space Emergent holographic direction r
146
anti-de Sitter space
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.