Presentation is loading. Please wait.

Presentation is loading. Please wait.

Weighted kNN, clustering, “early” trees and Bayesian

Similar presentations


Presentation on theme: "Weighted kNN, clustering, “early” trees and Bayesian"— Presentation transcript:

1 Weighted kNN, clustering, “early” trees and Bayesian
Peter Fox Data Analytics – ITWS-4600/ITWS-6600/MATP-4450 Group 2 Module 6, February 12, 2018

2 Plot tools/ tips pairs, gpairs, scatterplot.matrix, clustergram, etc. data() # precip, presidents, iris, swiss, sunspot.month (!), environmental, ethanol, ionosphere More script fragments in R are available on the web site ( )

3

4

5 And use a contingency table
> data(Titanic) > mdl <- naiveBayes(Survived ~ ., data = Titanic) > mdl Naive Bayes Classifier for Discrete Predictors Call: naiveBayes.formula(formula = Survived ~ ., data = Titanic) A-priori probabilities: Survived No Yes Conditional probabilities: Class Survived st nd rd Crew No Yes Sex Survived Male Female No Yes Age Survived Child Adult No Yes Lab5b_nbayes1.R

6 http://www. ugrad. stat. ubc. ca/R/library/mlbench/html/HouseVotes84
require(mlbench) data(HouseVotes84) model <- naiveBayes(Class ~ ., data = HouseVotes84) predict(model, HouseVotes84[1:10,-1]) predict(model, HouseVotes84[1:10,-1], type = "raw") pred <- predict(model, HouseVotes84[,-1]) table(pred, HouseVotes84$Class)

7 Exercise for you > data(HairEyeColor) > mosaicplot(HairEyeColor) > margin.table(HairEyeColor,3) Sex Male Female > margin.table(HairEyeColor,c(1,3)) Hair Male Female Black Brown Red Blond How would you construct a naïve Bayes classifier and test it?

8 Cars?

9 Linear regression? Or?

10 Ionosphere: group2/lab2_kknn2.R
require(kknn) data(ionosphere) ionosphere.learn <- ionosphere[1:200,] ionosphere.valid <- ionosphere[-c(1:200),] fit.kknn <- kknn(class ~ ., ionosphere.learn, ionosphere.valid) table(ionosphere.valid$class, fit.kknn$fit) # vary kernel (fit.train1 <- train.kknn(class ~ ., ionosphere.learn, kmax = 15, kernel = c("triangular", "rectangular", "epanechnikov", "optimal"), distance = 1)) table(predict(fit.train1, ionosphere.valid), ionosphere.valid$class) #alter distance (fit.train2 <- train.kknn(class ~ ., ionosphere.learn, kmax = 15, kernel = c("triangular", "rectangular", "epanechnikov", "optimal"), distance = 2)) table(predict(fit.train2, ionosphere.valid), ionosphere.valid$class)

11 Results ionosphere.learn <- ionosphere[1:200,] # convenience samping!!!! ionosphere.valid <- ionosphere[-c(1:200),] fit.kknn <- kknn(class ~ ., ionosphere.learn, ionosphere.valid) table(ionosphere.valid$class, fit.kknn$fit) b g b 19 8 g 2 122

12 (fit. train1 <- train. kknn(class ~. , ionosphere
(fit.train1 <- train.kknn(class ~ ., ionosphere.learn, kmax = 15, + kernel = c("triangular", "rectangular", "epanechnikov", "optimal"), distance = 1)) Call: train.kknn(formula = class ~ ., data = ionosphere.learn, kmax = 15, distance = 1, kernel = c("triangular", "rectangular", "epanechnikov", "optimal")) Type of response variable: nominal Minimal misclassification: 0.12 Best kernel: rectangular Best k: 2 table(predict(fit.train1, ionosphere.valid), ionosphere.valid$class) b g b 25 4 g 2 120

13 (fit. train2 <- train. kknn(class ~. , ionosphere
(fit.train2 <- train.kknn(class ~ ., ionosphere.learn, kmax = 15, + kernel = c("triangular", "rectangular", "epanechnikov", "optimal"), distance = 2)) Call: train.kknn(formula = class ~ ., data = ionosphere.learn, kmax = 15, distance = 2, kernel = c("triangular", "rectangular", "epanechnikov", "optimal")) Type of response variable: nominal Minimal misclassification: 0.12 Best kernel: rectangular Best k: 2 table(predict(fit.train2, ionosphere.valid), ionosphere.valid$class) b g b 20 5 g 7 119

14 However… there is more

15 Naïve Bayes – what is it? Example: testing for a specific item of knowledge that 1% of the population has been informed of (don’t ask how). An imperfect test: 99% of knowledgeable people test positive 99% of ignorant people test negative If a person tests positive – what is the probability that they know the fact?

16 Naïve approach… We have 10,000 representative people
100 know the fact/item, 9,900 do not We test them all: Get 99 knowing people testing knowing Get 99 not knowing people testing not knowing But 99 not knowing people testing as knowing Testing positive (knowing) – equally likely to know or not = 50%

17 Tree diagram 10000 ppl 1% know (100ppl) 99% test to know (99ppl)
1% test not to know (1per) 99% do not know (9900ppl) 1% test to know (99ppl) 99% test not to know (9801ppl)

18 Relation between probabilities
For outcomes x and y there are probabilities of p(x) and p (y) that either happened If there’s a connection, then the joint probability = that both happen = p(x,y) Or x happens given y happens = p(x|y) or vice versa then: p(x|y)*p(y)=p(x,y)=p(y|x)*p(x) So p(y|x)=p(x|y)*p(y)/p(x) (Bayes’ Law) E.g. p(know|+ve)=p(+ve|know)*p(know)/p(+ve)= (.99*.01)/(.99* *.99) = 0.5

19 How do you use it? If the population contains x what is the chance that y is true? p(SPAM|word)=p(word|SPAM)*p(SPAM)/p(word) Base this on data: p(spam) counts proportion of spam versus not p(word|spam) counts prevalence of spam containing the ‘word’ p(word|!spam) counts prevalence of non-spam containing the ‘word’

20 Or.. What is the probability that you are in one class (i) over another class (j) given another factor (X)? Invoke Bayes: Maximize p(X|Ci)p(Ci)/p(X) (p(X)~constant and p(Ci) are equal if not known) So: conditional indep -

21 P(xk | Ci) is estimated from the training samples
Categorical: Estimate P(xk | Ci) as percentage of samples of class i with value xk Training involves counting percentage of occurrence of each possible value for each class Numeric: Actual form of density function is generally not known, so “normal” density (i.e. distribution) is often assumed

22 Digging into iris classifier<-naiveBayes(iris[,1:4], iris[,5]) table(predict(classifier, iris[,-5]), iris[,5], dnn=list('predicted','actual')) classifier$apriori classifier$tables$Petal.Length plot(function(x) dnorm(x, 1.462, ), 0, 8, col="red", main="Petal length distribution for the 3 different species") curve(dnorm(x, 4.260, ), add=TRUE, col="blue") curve(dnorm(x, 5.552, ), add=TRUE, col = "green")

23

24 Bayes > cl <- kmeans(iris[,1:4], 3) > table(cl$cluster, iris[,5]) setosa versicolor virginica # > m <- naiveBayes(iris[,1:4], iris[,5]) > table(predict(m, iris[,1:4]), iris[,5]) setosa versicolor virginica pairs(iris[1:4],main="Iris Data (red=setosa,green=versicolor,blue=virginica)", pch=21, bg=c("red","green3","blue")[unclass(iris$Species)])

25 Ex: Classification Bayes
Retrieve the abalone.csv dataset Predicting the age of abalone from physical measurements. Perform naivebayes classification to get predictors for Age (Rings). Interpret. Discuss in lab or on LMS.

26 Using a contingency table
> data(Titanic) > mdl <- naiveBayes(Survived ~ ., data = Titanic) > mdl Naive Bayes Classifier for Discrete Predictors Call: naiveBayes.formula(formula = Survived ~ ., data = Titanic) A-priori probabilities: Survived No Yes Conditional probabilities: Class Survived st nd rd Crew No Yes Sex Survived Male Female No Yes Age Survived Child Adult No Yes

27 Using a contingency table
> predict(mdl, as.data.frame(Titanic)[,1:3]) [1] Yes No No No Yes Yes Yes Yes No No No No Yes Yes Yes Yes Yes No No No Yes Yes Yes Yes No [26] No No No Yes Yes Yes Yes Levels: No Yes

28 At this point… You may realize the inter-relation among classifications and clustering methods, at an absolute and relative level (i.e. hierarchical -> trees…) is COMPLEX… Trees are interesting from a decision perspective: if this or that, then this…. Beyond just distance measures: clustering (kmeans) to probabilities (Bayesian) And, so many ways to visualize them…


Download ppt "Weighted kNN, clustering, “early” trees and Bayesian"

Similar presentations


Ads by Google