Presentation is loading. Please wait.

Presentation is loading. Please wait.

General Strong Polarization

Similar presentations


Presentation on theme: "General Strong Polarization"β€” Presentation transcript:

1 General Strong Polarization
Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Guruswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) Oct. 8, 2018 Berkeley: General Strong Polarization

2 Part I: Motivation Achieving Shannon Capacity
Oct. 8, 2018 Berkeley: General Strong Polarization

3 Shannon and Channel Capacity
Shannon [β€˜48]: For every (noisy) channel of communication, βˆƒ capacity 𝐢 s.t. communication at rate 𝑅<𝐢 is possible and 𝑅>𝐢 is not. formalization – omitted. Example: Acts independently on bits Capacity =1 – 𝐻(𝑝) ; 𝐻(𝑝) = binary entropy! 𝐻 𝑝 =𝑝⋅ log 1 𝑝 + 1βˆ’π‘ β‹… log 1 1βˆ’π‘ Capacity? βˆƒ 𝐸: 𝔽 2 π‘˜ 𝑛 β†’ 𝔽 2 𝑛 𝐷: 𝔽 2 𝑛 β†’ 𝔽 2 π‘˜ 𝑛 w. Pr 𝐷 𝐡𝑆𝐢 𝐸 π‘š β‰ π‘š =π‘œ(1) lim π‘›β†’βˆž π‘˜ 𝑛 𝑛 β‰₯𝑅 (Rate) π‘‹βˆˆ 𝔽 2 𝑋 w.p. 1βˆ’π‘ 1βˆ’π‘‹ w.p. 𝑝 𝐡𝑆𝐢(𝑝) Oct. 8, 2018 Berkeley: General Strong Polarization

4 β€œAchieving” Shannon Capacity
Commonly used phrase. Many mathematical interpretations. Some possibilities: How small can 𝑛 be? Get 𝑅>πΆβˆ’πœ– with polytime algorithms? [Luby et al.’95] running time poly 𝑛 πœ– ? (or 𝑛=poly 1 πœ– ?) Open till 2008 Arikan’08: Invented β€œPolar Codes” … Final resolution: Guruswami+Xia’13, Hassani+Alishahi+Urbanke’13 – Strong analysis Shannon β€˜48: 𝑛=𝑂 1 πœ– 2 ; πœ–β‰πΆβˆ’π‘… Forney β€˜66 :time =π‘π‘œπ‘™π‘¦ 𝑛, πœ– 2 Oct. 8, 2018 Berkeley: General Strong Polarization

5 Polar Codes and Polarization
Arikan: Defined Polar Codes, one for every 𝑑 Associated Martingale 𝑋 0 ,…, 𝑋 𝑑 ,… 𝑋 𝑑 ∈[0,1] 𝑑th code: Length 𝑛= 2 𝑑 If Pr 𝑋 𝑑 ∈ 𝜏 𝑑 ,1βˆ’ 𝛿 𝑑 ≀ πœ– 𝑑 then 𝑑th code is πœ– 𝑑 + 𝛿 𝑑 -close to capacity, and Pr Decode BSC Encode π‘š β‰ π‘š ≀𝑛⋅ 𝜏 𝑑 Need 𝜏 𝑑 =π‘œ 1 𝑛 (strong polarization β‡’πœ=𝑛𝑒𝑔(𝑛)) Need πœ– 𝑑 =1/ 𝑛 Ξ©(1) (⇐ strong polarization) Arikan et al. 𝜏=𝑛𝑒𝑔 𝑛 ;πœ–=π‘œ 1 ; [GX13,HAU13] ↑ Oct. 8, 2018 Berkeley: General Strong Polarization

6 Part II: Martingales, Polarization, Strong & Local
Oct. 8, 2018 Berkeley: General Strong Polarization

7 Martingales and Polarization
[0,1]-Martingale: Sequence of r.v.s 𝑋 0 , 𝑋 1 , 𝑋 2 ,… 𝑋 𝑑 ∈ 0,1 , 𝔼 𝑋 𝑑+1 | 𝑋 0 ,…, 𝑋 𝑑 = 𝑋 𝑑 Well-studied in algorithms: [MotwaniRaghavan, Β§4.4], [MitzenmacherUpfal, Β§12] E.g., 𝑋 𝑑 = Expected approx. factor of algorithm given first 𝑑 random choices. Usually study β€œconcentration” E.g. … whp 𝑋 final ∈[ 𝑋 0 ±𝜎] Today: Polarization: … whp 𝑋 final βˆ‰ πœ–,1βˆ’πœ– ⇔ lim π‘‘β†’βˆž 𝑋 𝑑 = 𝑁(𝑋 0 , 𝜎 2 ) ⇔ lim π‘‘β†’βˆž 𝑋 𝑑 = Bern 𝑋 0 Oct. 8, 2018 Berkeley: General Strong Polarization

8 Berkeley: General Strong Polarization
Some examples 𝑋 𝑑+1 = 𝑋 𝑑 + 4 βˆ’π‘‘ w.p 𝑋 𝑑 βˆ’ 4 βˆ’π‘‘ w.p 𝑋 𝑑+1 = 𝑋 𝑑 + 2 βˆ’π‘‘ w.p 𝑋 𝑑 βˆ’ 2 βˆ’π‘‘ w.p 𝑋 𝑑+1 = 𝑋 𝑑 w.p if 𝑋 𝑑 ≀ 𝑋 𝑑 w.p if 𝑋 𝑑 ≀ 1 2 𝑋 𝑑+1 = 𝑋 𝑑 2 w.p if 𝑋 𝑑 ≀ 𝑋 𝑑 βˆ’ 𝑋 𝑑 2 w.p if 𝑋 𝑑 ≀ 1 2 Converges! Uniform on [0,1] Polarizes (weakly)! Polarizes (strongly)! Oct. 8, 2018 Berkeley: General Strong Polarization

9 Main Result: Definition and Theorem
Strong Polarization: (informally) Pr 𝑋 𝑑 ∈(𝜏,1βˆ’πœ) β‰€πœ– if 𝜏= 2 βˆ’πœ”(𝑑) and πœ–= 2 βˆ’π‘‚(𝑑) formally βˆ€π›Ύ>0 βˆƒπ›½<1,𝑐 𝑠.𝑑. βˆ€π‘‘ Pr 𝑋 𝑑 ∈( 𝛾 𝑑 ,1βˆ’ 𝛾 𝑑 ) ≀𝑐⋅ 𝛽 𝑑 Local Polarization: Variance in the middle: 𝑋 𝑑 ∈(𝜏,1βˆ’πœ) βˆ€πœ>0 βˆƒπœŽ>0 𝑠.𝑑. βˆ€π‘‘, 𝑋 𝑑 ∈ 𝜏,1βˆ’πœ β‡’π‘‰π‘Žπ‘Ÿ 𝑋 𝑑+1 𝑋 𝑑 β‰₯𝜎 Suction at the ends: 𝑋 𝑑 βˆ‰ 𝜏,1βˆ’πœ βˆƒπœƒ>0, βˆ€π‘<∞, βˆƒπœ>0 𝑠.𝑑. 𝑋 𝑑 <πœβ‡’ Pr 𝑋 𝑑+1 < 𝑋 𝑑 𝑐 β‰₯πœƒ Theorem: Local Polarization β‡’ Strong Polarization. Both definitions qualitative! β€œlow end” condition. Similar condition for high end Oct. 8, 2018 Berkeley: General Strong Polarization

10 Berkeley: General Strong Polarization
Proof (Idea): Step 1: The potential Ξ¦ 𝑑 ≝ min 𝑋 𝑑 , 1βˆ’ 𝑋 𝑑 decreases by constant factor in expectation in each step. ⇒𝔼 Ξ¦ 𝑇 = exp βˆ’π‘‡ β‡’ Pr 𝑋 𝑇 β‰₯ exp βˆ’π‘‡/2 ≀ exp βˆ’π‘‡/2 Step 2: Next 𝑇 time steps, 𝑋 𝑑 plummets whp 2.1: Say, If 𝑋 𝑑 β‰€πœ then Pr 𝑋 𝑑+1 ≀ 𝑋 𝑑 β‰₯1/2. 2.2: Pr βˆƒπ‘‘βˆˆ 𝑇,2𝑇 𝑠.𝑑. 𝑋 𝑑 >𝜏 ≀ 𝑋 𝑇 /𝜏 [Doob] 2.3: If above doesn’t happen 𝑋 2𝑇 < 5 βˆ’π‘‡ whp QED Oct. 8, 2018 Berkeley: General Strong Polarization

11 Part III: Polar Codes Encoding, Decoding, Martingale, Polarization
Oct. 8, 2018 Berkeley: General Strong Polarization

12 Lesson 0: Compression β‡’ Coding
Defn: Linear Compression Scheme: 𝑀,𝐷 form compression scheme for bern 𝑝 𝑛 if Linear map 𝑀: 𝔽 2 𝑛 β†’ 𝔽 2 π‘š Pr π‘βˆΌbern 𝑝 𝑛 𝐷 𝑀⋅𝑍 ≠𝑍 =π‘œ 1 Hopefully π‘š 𝑛 ≀𝐻 𝑝 +πœ– Compression β‡’ Coding Let 𝑀 βŠ₯ be such that 𝑀⋅𝑀 βŠ₯ =0; Encoder: 𝑋↦ 𝑀 βŠ₯ ⋅𝑋 Error-Corrector: π‘Œ= 𝑀 βŠ₯ ⋅𝑋+π‘β†¦π‘Œβˆ’π· π‘€β‹…π‘Œ =π‘Œβˆ’π· 𝑀⋅ 𝑀 βŠ₯ ⋅𝑋+𝑀.𝑍 = 𝑀.𝑝. 1βˆ’π‘œ(1) 𝑀 βŠ₯ ⋅𝑋 𝑀 𝑀 βŠ₯ Oct. 8, 2018 Berkeley: General Strong Polarization

13 Question: How to compress?
Arikan’s key idea: Start with 2Γ—2 β€œPolarization Transform”: π‘ˆ,𝑉 β†’ π‘ˆ+𝑉,𝑉 Invertible – so does nothing? If π‘ˆ,𝑉 independent, then π‘ˆ+𝑉 β€œmore random” than either 𝑉 | π‘ˆ+𝑉 β€œless random” than either Iterate (ignoring conditioning) End with bits that are almost random, or almost determined (by others). Output β€œtotally random part” to get compression! Oct. 8, 2018 Berkeley: General Strong Polarization

14 Iteration elaborated:
Martingale: 𝑋 𝑑 ≝ conditional entropy of random output after 𝑑 iterations B A+B A C+D A+B+C+D D C+D C D B+D H G+H G F E+F E F+H E+F+G+H Oct. 8, 2018 Berkeley: General Strong Polarization

15 The Polarization Butterfly
𝑃 𝑛 π‘ˆ,𝑉 = 𝑃 𝑛 2 π‘ˆ+𝑉 , 𝑃 𝑛 2 𝑉 Polarization β‡’βˆƒπ‘†βŠ† 𝑛 𝐻 π‘Š 𝑛 βˆ’π‘† π‘Š 𝑆 β†’0 𝑆 ≀ 𝐻 𝑝 +πœ– ⋅𝑛 𝑍 1 𝑍 2 𝑍 𝑛 2 𝑍 𝑛 2 +1 𝑍 𝑛 2 +2 𝑍 𝑛 𝑍 1 + 𝑍 𝑛 2 +1 𝑍 2 + 𝑍 𝑛 2 +2 𝑍 𝑛 2 + 𝑍 𝑛 𝑍 𝑛 2 +1 𝑍 𝑛 2 +2 𝑍 𝑛 π‘Š 1 π‘Š 2 π‘Š 𝑛 2 π‘Š 𝑛 2 +1 π‘Š 𝑛 2 +2 π‘Š 𝑛 π‘ˆ Compression 𝐸 𝑍 = 𝑃 𝑛 𝑍 𝑆 Encoding time =𝑂 𝑛 log 𝑛 (given 𝑆) 𝑉 To be shown: 1. Decoding = 𝑂 𝑛 log 𝑛 2. Polarization! Oct. 8, 2018 Berkeley: General Strong Polarization

16 The Polarization Butterfly: Decoding
Decoding idea: Given 𝑆, π‘Š 𝑆 = 𝑃 𝑛 π‘ˆ,𝑉 Compute π‘ˆ+π‘‰βˆΌBern 2π‘βˆ’2 𝑝 2 Determine π‘‰βˆΌ ? 𝑍 1 𝑍 2 𝑍 𝑛 2 𝑍 𝑛 2 +1 𝑍 𝑛 2 +2 𝑍 𝑛 𝑍 1 + 𝑍 𝑛 2 +1 π‘Š 1 π‘Š 2 π‘Š 𝑛 2 π‘Š 𝑛 2 +1 π‘Š 𝑛 2 +2 π‘Š 𝑛 𝑍 2 + 𝑍 𝑛 2 +2 𝑉|π‘ˆ+π‘‰βˆΌ 𝑖 Bern( π‘Ÿ 𝑖 ) Key idea: Stronger induction! - non-identical product distribution 𝑍 𝑛 2 + 𝑍 𝑛 𝑍 𝑛 2 +1 Decoding Algorithm: Given 𝑆, π‘Š 𝑆 = 𝑃 𝑛 π‘ˆ,𝑉 , 𝑝 1 ,…, 𝑝 𝑛 Compute π‘ž 1 ,.. π‘ž 𝑛 2 ← 𝑝 1 … 𝑝 𝑛 Determine π‘ˆ+𝑉=𝐷 π‘Š 𝑆 + , π‘ž 1 … π‘ž 𝑛 2 Compute π‘Ÿ 1 … π‘Ÿ 𝑛 2 ← 𝑝 1 … 𝑝 𝑛 ;π‘ˆ+𝑉 Determine 𝑉=𝐷 π‘Š 𝑆 βˆ’ , π‘Ÿ 1 … π‘Ÿ 𝑛 2 𝑍 𝑛 2 +2 𝑍 𝑛 Oct. 8, 2018 Berkeley: General Strong Polarization

17 Polarization Martingale
𝑍 1 𝑍 2 𝑍 𝑛 2 𝑍 𝑛 2 +1 𝑍 𝑛 2 +2 𝑍 𝑛 𝑍 1 + 𝑍 𝑛 2 +1 π‘Š 1 π‘Š 2 π‘Š 𝑛 2 π‘Š 𝑛 2 +1 π‘Š 𝑛 2 +2 π‘Š 𝑛 Idea: Follow 𝑋 𝑑 = 𝐻 𝑍 𝑖,𝑑 𝑍 <𝑖,𝑑 for random 𝑖 𝑍 2 + 𝑍 𝑛 2 +2 𝑍 𝑖,0 𝑍 𝑖,1 … Z 𝑖,𝑑 … 𝑍 𝑖, log 𝑛 𝑍 𝑛 2 + 𝑍 𝑛 𝑍 𝑛 2 +1 𝑋 𝑑 Martingale! 𝑍 𝑛 2 +2 Polarizes? Strongly? ⇐ Locally? 𝑍 𝑛 Oct. 8, 2018 Berkeley: General Strong Polarization

18 Local Polarization of Arikan Martingale
Variance in the Middle: Roughly: 𝐻 𝑝 ,𝐻 𝑝 β†’(𝐻 2π‘βˆ’2 𝑝 2 , 2𝐻 𝑝 βˆ’π» 2π‘βˆ’2 𝑝 2 ) π‘βˆˆ 𝜏,1βˆ’πœ β‡’2π‘βˆ’2 𝑝 2 far from 𝑝 + continuity of 𝐻 β‹… β‡’ 𝐻 2π‘βˆ’2 𝑝 2 far from 𝐻(𝑝) Suction: High end:𝐻 1 2 βˆ’π›Ύ →𝐻 1 2 βˆ’ 𝛾 2 𝐻 1 2 βˆ’π›Ύ =1 βˆ’Ξ˜ 𝛾 2 β‡’1βˆ’ 𝛾 2 β†’1 βˆ’Ξ˜ 𝛾 4 Low end: 𝐻 𝑝 β‰ˆπ‘ log 1 𝑝 ;2𝐻 𝑝 β‰ˆ2𝑝 log 1 𝑝 ; 𝐻 2π‘βˆ’2 𝑝 2 β‰ˆπ» 2𝑝 β‰ˆ2𝑝 log 1 2𝑝 β‰ˆ2𝐻 𝑝 βˆ’2π‘β‰ˆ 2βˆ’ 1 log 1 𝑝 𝐻 𝑝 Dealing with conditioning – more work (lots of Markov) Oct. 8, 2018 Berkeley: General Strong Polarization

19 Berkeley: General Strong Polarization
β€œNew contributions” So far: Reproduced old work (simpler proofs?) Main new technical contributions: Strong polarization of general transforms E.g. π‘ˆ,𝑉,π‘Š β†’(π‘ˆ+𝑉,𝑉,π‘Š)? Exponentially strong polarization [BGS’18] Suction at low end is very strong! Random π‘˜Γ—π‘˜ matrix yields 𝑋 𝑑+1 β‰ˆ 𝑋 𝑑 π‘˜ whp Strong polarization of Markovian sources [GNS’19?] Separation of compression of known sources from unknown ones. Oct. 8, 2018 Berkeley: General Strong Polarization

20 Berkeley: General Strong Polarization
Conclusions Polarization: Important phenomenon associated with bounded random variables. Not always bad   Needs better understanding! Recently also used in CS: [Lovett Meka] – implicit [Chattopadhyay-Hatami-Hosseini-Lovett] - explicit Oct. 8, 2018 Berkeley: General Strong Polarization

21 Berkeley: General Strong Polarization
Thank You! Oct. 8, 2018 Berkeley: General Strong Polarization

22 Berkeley: General Strong Polarization
Rest of the talk Background/Motivation: The Shannon Capacity Challenge Resolution by [Arikan’08], [Guruswami-Xia’13], [Hassani,Alishahi,Urbanke’13]: Polar Codes! Key ideas: Polar Codes & Arikan-Martingale. Implications of Weak/Strong Polarization. Our Contributions: Simplification & Generalization Local Polarization β‡’ Strong Polarization Arikan-Martingale Locally Polarizes (generally) Oct. 8, 2018 Berkeley: General Strong Polarization

23 Context for today’s talk
[Arikan’08]: Martingale associated to general class of codes. Martingale polarizes (weakly) implies code achieves capacity (weakly) Martingale polarizes weakly for entire class. [GX’13, HAU’13]: Strong polarization for one specific code. Why so specific? Bottleneck: Strong Polarization Rest of talk: Polar codes, Martingale and Strong Polarization Oct. 8, 2018 Berkeley: General Strong Polarization


Download ppt "General Strong Polarization"

Similar presentations


Ads by Google