Presentation is loading. Please wait.

Presentation is loading. Please wait.

Combinational Logic Instructor : Nyoman Karna Course Number : FEH2H3

Similar presentations


Presentation on theme: "Combinational Logic Instructor : Nyoman Karna Course Number : FEH2H3"— Presentation transcript:

1 Combinational Logic Instructor : Nyoman Karna Course Number : FEH2H3
As Taught In : 1st semester Level : Undergraduate

2 Logic Circuit Logic Circuit Combinational Sequential
Synchronous (clock) Asynchronous Fundamental Pulse mode

3 Combinational Logic BLOCK DIAGRAM :
In combinational logic, the value of the output depends only with the input (no feedback) Input change  output change (after some delay) BLOCK DIAGRAM :

4 Combinational Logic ? Analysis
Given the circuit, we can determine the function Function can be explained using: Boolean approach Truth Table approach Design/Synthesis Given the function, we can determine the circuit ? ?

5 F’2=(A’+B’)(A’+C’)(B’+C’)
Analysis Procedure Boolean Approach T2=ABC T1=A+B+C T3=AB'C'+A'BC'+A'B'C F’2=(A’+B’)(A’+C’)(B’+C’) F2=AB+AC+BC F1=AB'C'+A'BC'+A'B'C+ABC F2=AB+AC+BC

6 Analysis Procedure Truth Table approach = 0 A B C F1 F2 1

7 Analysis Procedure Truth Table approach A B C F1 F2 0 0 0 0 0 1 1 0
= 0 = 1 1 1 A B C F1 F2 1 1

8 Analysis Procedure Truth Table approach A B C F1 F2 0 0 0 0 0 1 1
= 0 = 1 1 1 A B C F1 F2 1 1 1

9 Analysis Procedure Truth Table approach A B C F1 F2 0 0 0 0 0 1 1
= 0 = 1 1 A B C F1 F2 1 1

10 Analysis Procedure Truth Table approach A B C F1 F2 0 0 0 0 0 1 1
= 1 = 0 1 1 A B C F1 F2 1 1 1

11 Analysis Procedure Truth Table approach A B C F1 F2 0 0 0 0 0 1 1
= 1 = 0 1 A B C F1 F2 1 1

12 Analysis Procedure Truth Table approach A B C F1 F2 0 0 0 0 0 1 1
= 1 = 0 1 A B C F1 F2 1 1

13 Analysis Procedure Truth Table approach F2=AB+AC+BC
A B C F1 F2 1 = 1 1 1 1 F BC BC 00 01 11 10 00 01 11 10 A A 1 1 1 1 F2=AB+AC+BC F1=AB'C'+A'BC'+A'B'C+ABC

14 Design Procedure Determine input and output Determine the function
Create Truth Table Simplify (using Boolean Algebra or K-Map) Determine the simple function Create the logical circuit tamnbahka pengzntzr soal

15 Half Adder half adder (HA), add 2 bits A and B to create sum and carry. Carry represent overflow of the addition A B Carry Sum 1 Carry Sum tamnbahka pengzntzr soal

16 Full Adder A B Cin Sum Cout 1
1 Prosedur 1 dan 2 lebih dipertegas/ditayangkan

17 Carry Propagate Addition
Binary Adder Binary Adder x3x2x1x y3y2y1y0 S3S2S1S0 C0 Cy c3 c2 c + x3 x2 x1 x0 + y3 y2 y1 y0 ──────── Cy => S3 S2 S1 S0 Carry Propagate Addition x x x x0 y y y y0 FA FA FA FA C C C C1 S S S S0

18 Multiplexer Multiplexer has several inputs, selector, and only 1 output Multiplexer forward one specific input to output based on the value of the selector

19 Multiplexer The value of “y” correspond to a specific “x” (x0 ... x7) based on the value of selector (s0 ... s2)

20 Demultiplexer Is the opposite of multiplexer, has only 1 input, selector, and several outputs Place the value of input to a specific output, based on the value of the selector

21 Demultiplekser Input a is placed to a specific “y” (y0 ... y3) based on the selector’s value (s0 and s1)

22 X = (x1, x2, …. xm) , Y = (y1, y2, … yn) ; usually m<n
Decoder Decoder has input(s) and output(s) Is to transform a specific input code into a specific output code X Y X = (x1, x2, …. xm) , Y = (y1, y2, … yn) ; usually m<n

23 Example: Binary Decoder (m to 2m)
Input is read as binary One specific output is on based on the value of input Only one output is active at one time

24 X = (x1, x2, …. xm) , Y = (y1, y2, … yn) ; usually m>n
Encoder Encoder has input(s) and output(s) Is to transform a specific input code into a specific output code X Y X = (x1, x2, …. xm) , Y = (y1, y2, … yn) ; usually m>n

25 Example: Binary Encoder (2n ke n)
Binary encoder from one specific input to binary version for the output Only one input is active at one time

26 LED 7 Segment Every input (a, b, c, d, e, f, g) control only 1 LED
Has 128 combinations but only 10 symbols used ( )

27 3 State Output Has 3 possiblity output state HIGH Vout ~ 5 volt
LOW Vout ~ 0 volt OPEN (high impedance) Vout = floating A Y C Logic 1 Logic 0 Logic ?

28 3 State Buffer Input “select” activates all gates

29 Bidirectional 3 State Buffer
Input “direction” determines either: A  B or B  A


Download ppt "Combinational Logic Instructor : Nyoman Karna Course Number : FEH2H3"

Similar presentations


Ads by Google