Presentation is loading. Please wait.

Presentation is loading. Please wait.

Department of Chemistry

Similar presentations


Presentation on theme: "Department of Chemistry"— Presentation transcript:

1 Department of Chemistry
Taking the next step with halogenated olefins: Microwave spectroscopy and molecular structures of tetrafluoro- and chloro-trifluoro propenes and their complexes with the argon atom Mark D. Marshall, Helen O. Leung, Miles Wronkovich, Megan Tracy, Laboni Hoque, Allison Randy-Cofie, and Alina Dao Department of Chemistry Amherst College Supported by the National Science Foundation

2 Intermolecular interactions: fluoroethylenes-protic acids
2.441(4) Å 3.159 Å 122.6(4)o 36.4(2)o Cole & Legon, Chem. Phys. Lett. 369, 31 (2003). 2.123(1) Å 3.162 Å 123.7(1)o 18.3(1)o Kisiel, Fowler & Legon, J. Chem. Phys. 93, 3054 (1990). 1.89(1) Å 2.734 Å 121.4o 19(2)o Cole & Legon, Chem. Phys. Lett. 400, 419 (2004). The vinyl fluorideHX complexes are planar and adopt the same structural motif. There are two interactions: a H-bond donated by HX, and a secondary interaction between the nucleophilic portion of HX and an H atom cis to F. As the acid strength decreases, the H bond becomes longer and less linear. The CF---H angle for each complex indicates that the electron density of F that interacts with the acid is ~120o from the CF bond.

3 Significant differences for chloroethylenes
2.319(6) Å 2.59(1) Å 19.8(3)o 102.4(2)o vinyl chlorideHF 58.5(5)o 88.7(2)o 3.01(1) Å 2.939(4) Å vinyl chlorideHCCH 100.0(8)o 39(2)o 2.6810(2) Å vinyl chlorideHCl Unlike vinyl fluorideHX, the manner of binding for vinyl chlorideHX depends on the identity of the acid partner. The "top" binding configuration of the HF complex is less strained than a "side" binding structure. The "side" binding configuration of the HCCH complex allows it to interact with the most electropositive H atom in vinyl chloride. The nonplanar HCl complex is likely a result of dispersion interactions that arise between Cl in HCl and the electron density in vinyl chloride.

4 Chlorofluoroethylene-HCCH complexes
Same binding mode as vinyl fluoride-HCCH HCCH prefers to bind to F Same binding mode as vinyl chloride-HCCH HCCH prefers to bind to Cl First complex observed where an acid binds to Cl, instead of F, in a substituted ethylene

5 Extend to halopropenes by substituting –CF3 group
Vinyl fluoride 2,3,3,3-tetrafluoropropene

6 Extend to halopropenes by substituting –CF3 group
Vinyl chloride 2-chloro-3,3,3-trifluoropropene

7 Extend to halopropenes by substituting –CF3 group
Vinyl chloride (Z)-1-chloro-3,3,3-trifluoropropene

8 Extend to halopropenes by substituting –CF3 group
Vinyl chloride (E)-1-chloro-3,3,3-trifluoropropene

9 First step: Characterize monomer spectra and structures

10 Experimental methods Chirped pulse Fourier transform microwave spectrometer: GHz Less abundant isotopologues studied as necessary in Balle- Flygare instrument 1% halopropene in argon is expanded through two pulsed valves with 0.8 mm nozzle Spectra obtained as 4 GHz portions, 20 W power, 4 s chirp Ten 10-s FIDs per gas pulse >400,000 FIDs averaged 200 kHz FWHM Spectra analyzed using Kisiel’s AABS package in conjunction with Pickett’s SPFIT/SPCAT 2,3,3,3-tetrafluoropropene monomer used original Amherst CP-FTMW and somewhat different conditions Photo courtesy of Jessica Mueller, Amherst College

11 2,3,3,3-tetrafluropropene Marshall, Leung, Scheetz, Thaler, and Muenter, JMS, 266, 37 (2011) CF3CFCH2 CF3CF13CH2 CF313CFCH2 13CF3CFCH2 A / MHz (50) (17) (15) (12) B / MHz (39) (97) (91) (65) C / MHz (38) (93) (97) (69) J / 10-3 MHz 0.2570(86) 0.302(29) 0.249(33) 0.341(23) JK / 10-3 MHz 1.0862(37) 1.341(77) 1.04(10) 0.988(82) K / 10-3 MHz 0.8494(89) 0.8494a J / 10-3 MHz (42) a K / 10-3 MHz 2.5308(36) 2.5308a Highest J 12 5 4 Highest Ka 6 3 rms / kHz 7.44 7.37 5.23 Tune-up molecule for original Amherst CP- FTMW spectrometer Two 6 GHz portions 5 W power 50,000 FIDs Helium carrier gas Four isotopologues Ab initio anharmonic α’s used to get semi-experimental re structure aFixed at the value appropriate to the most abundant isotopologue.

12 2,3,3,3-tetrafluropropene – r0 structure
C1C2 / Å 1.3215a C2C3 / Å 1.5029b C1H1 / Å 1.0766c C1H2 / Å 1.0747c C2F1 / Å (55) C3F2 / Å (62)d C3F3 / Å (62)d C3F4 / Å H1C1C2 / o c H2C1C2 / o c F1C2C1 / o c C3C2C1 / o 126.84(13) F2C3C2 / o (22) F3C3C2 / o c F4C3C2 / o F3C3C2C1 / o c F4C3C2C1 / o  c No evidence of internal rotation of –CF3 group Leung, Marshall, Wronkovich, JMS, Caminati Issue, Part 2. aFixed to the bond length determined by the Kraitchman analysis bCalculated from the Kraitchman coordinates by assuming that C3 lies on the a axis cFixed to ab initio value. dThe C3–F3 and C3–F4 bonds are assumed to have the same length, which in turn is fixed to be Å longer than that for C3–F2, as suggested by ab initio results.

13 2-chloro-3,3,3-trifluoropropene
Rich a/b-type spectrum 35Cl/ 37Cl isotopologues Cl nuclear quadupole coupling hyperfine All provide additional structural information

14 2-chloro-3,3,3-trifluoropropene broadband spectra (MHz)
CF3C35ClCH2 CF3C37ClCH2 CF3C35Cl13CH2 CF313C35ClCH2 13CF3C35ClCH2 A (17) (24) (11) (70) (10) B (98) (13) (59) (66) (55) C (81) (13) (42) (58) (83) ΔJ/10-3 0.1748(11) 0.1681(25) 0.1468(69) 0.139(12) 0.1750(90) ΔJK/10-3 0.6728(34) 0.6600(56) 0.668(28) 0.865(47) 0.586(31) ΔK/10-3 (46) -0.420(11) -0.31(10) -0.729(66) -0.304(57) δJ/10-3 (28) (46) 0.0404(36) 0.0306(42) 0.0572(49) δK/10-3 (28) -1.310(10) -1.352(43) -1.695(85) -1.287(96) χaa (Cl) (33) (35) (15) (15) (22) χbb (Cl) (34) 0.5818(39) -1.571(12) -0.808(13) -0.617(17) χcc (Cl) (31) (33) 34.566(13) 34.553(13) 34.570(14) |χab|(Cl) 54.88(36) 42.70(59) 53.07(85) 55.5(17) 51.5(24) rms/kHz 4.28 3.38 7.04 6.28 7.13 J range 1-12 1-10 2-7 2-10 Ka range 0-6 0-5 0-4 Pcc / u Å2 44.24

15 2-chloro-3,3,3-trifluoropropene narrowband spectra (MHz)
CF3C35Cl13CH2 CF313C35ClCH2 13CF3C35ClCH2 CF3C37Cl13CH2 CF313C37ClCH2 13CF3C37ClCH2 A (34) (30) (26) (41) (32) (70) B (16) (27) (30) (36) (19) (40) C (13) (21) (22) (19) (12) (30) ΔJ/10-3 0.1684(21) 0.1683(37) 0.1844(40) 0.1600(51) 0.1720(33) 0.1710(59) ΔJK/10-3 0.6600(85) 0.708(16) 0.640(12) 0.669(21) 0.650(18) 0.671(31) ΔK/10-3 -0.383(33) -0.490(27) -0.442(12) (26) -0.420* -0.460(40) δJ/10-3 0.0438(11) 0.0390(18) 0.0453(21) 0.0387(26) 0.0411(13) 0.0407(24) δK/10-3 -1.375(14) -1.441(35) -1.295(35) -1.520(46) -1.340(44) -1.41(10) χaa (Cl) (43) (67) (66) (59) (10) (14) χbb (Cl) (37) (59) (51) (47) (38) (65) χcc (Cl) (37) (61) (50) (58) (82) 27.220(67) |χab|(Cl) 54.91(24) 53.40(82) 52.10(82) 47.84(39) 43.80(89) 42.3(25) rms/kHz 2.494 3.017 2.938 2.295 0.822 1.832 J range 1-7 1-9 1-6 Ka range 0-3 0-4 0-5 Pcc / u Å2 44.24

16 2-chloro-3,3,3-trifluoropropene structure
No evidence of internal rotation of –CF3 group Kisiel’s STRFIT used to fit A, B, C of 8 isotopologues to 7 structural parameters Numbers in brackets fixed at ab initio values rms = u Å2 and well-behaved correlations

17 (Z)-1-chloro-3,3,3-trifluoropropene broadband spectra (MHz)
CH35ClCHCF3 CH37ClCHCF3 13CH35ClCHCF3 CH35Cl13CHCF3 CH35ClCH13CF3 A (19) (31) (11) (11) (97) B (71) (96) (83) (69) (51) C (70) (81) (90) (81) (60) ΔJ/10-3 (44) (58) 0.2932(53) 0.2901(49) 0.2839(55) ΔJK/10-3 4.4062(17) 4.2763(20) 4.094(29) 4.307(26) 4.412(19) ΔK/10-3 -3.727(13) -3.639(30) -4.04(14) -3.59(11) -3.85(10) δJ/10-3 (61) (86) 0.0326(28) (77) 0.0260(11) δK/10-3 (62) -3.355(16) -2.67(36) -2.53(36) -3.29(19) χaa (Cl) 8.7789(27) 6.4971(33) 9.352(13) 8.722(13) 8.767(13) χbb (Cl) (26) (30) (10) (11) (99) χcc (Cl) (25) (31) (26) 30.390(10) 30.37(11) |χab (Cl)| 51.937(38) 41.30(62) 52.68(60) 51.08(70) 53.15(58) J range 0-17 0-15 0-8 0-11 Ka range 0-6 0-5 0-3 rms / kHz 4.97 5.56 8.40 8.31 7.46 Pcc / u Å2 44.35

18 (Z)-1-chloro-3,3,3-trifluoropropene structure
Determined by fixed C–F bond length and Pcc Kisiel’s STRFIT used to fit A, B, C of 5 isotopologues to 5 structural parameters Numbers in brackets fixed at ab initio values rms = u Å2 and well- behaved correlations (35)° 127.4(20)° 125.7(15)° 1.530(28) Å 1.682(21) Å No evidence of internal rotation of –CF3 group 1.250(53) Å

19 (E)-1-chloro-3,3,3-trifluoropropene broadband spectra (MHz)
CH35ClCHCF3 CH37ClCHCF3 A (72) 5182.3(37) B (50) (31) C (50) (31) ΔJ / 10-3 0.0392(28) 0.0708(14) ΔJK / 10-3 1.444(26) 1.161(11) ΔK / 10-3 [ 0.]* δJ / 10-3 [ ]* 0.0133(30) δK / 10-3 49.97(27) χaa (15) (27) χbb 31.695(19) 24.795(40) χcc 31.458(20) 25.035(40) |χab| [ 28.52]* 13.0(12) J range 3 - 9 4 - 9 Ka range 0 - 5 0 - 6 rms / kHz 15.6 16.7 Pcc 44.29 45.31 Only a-type transitions observed μb is very small 13C isotope shifts small Stay tuned for structure… *held fixed at ab initio values

20 Ar-2,3,3,3-tetrafluropropene (MHz)
Ar−CF3CFCH2 Ar−CF3CF13CH2 Ar−CF313CFCH2 Ar−13CF3CFCH2 A (36) (15) (17) (15) B (15) (10) (10) (97) C (14) (97) (92) (90) J / 10-3 (68) (57) (58) (54) JK / 10-3 4.5457(23) 4.6200(40) 4.5638(40) 4.4487(37) K / 10-3 4.8754(97) 4.3075(80) 4.8557(88) 5.0374(77) J / 10-3 (22) (23) (23) (22) K / 10-3 0.506(13) 0.684(36) 0.543(36) 0.490(35) J range 1 – 16 1 – 11 Ka range 0 – 7 0 – 4 rms / kHz 11.23 1.48 1.55 Spectra obtained on Balle-Flygare FTMW Leung, Marshall, Wronkovich, JMS, Caminati Issue, Part 2.

21 Ar-2-chloro-3,3,3-trifluoropropene (MHz)
(89) Å 3.7234(11) Å 3.9736(29) Å 3.5441(18) Å Ar-CF3C35ClCH2 Ar-CF3C37ClCH2 A (20) (13) B (13) (12) C (13) (14) ΔJ/10-3 1.5476(10) 1.3414(85) ΔJK/10-3 2.0533(38) 2.146(26) ΔK/10-3 1.3817(39) 1.650* δJ/10-3 (50) 0.5822* δK/10-3 2.367(10) 1.427* χaa (Cl) 41.138(13) 33.13(14) χbb (Cl) (28) -7.785(21) |χab| (Cl) 16.41* 38.7(98) |χac| (Cl) 13.67* 10.51* |χbc| (Cl) 48.36* 38.50(81) rms/kHz 7.64 23.4 Kisiel’s STRFIT used to fit A, B, C of 2 isotopologues to r, θ, φ of Ar. Halopropene fixed at monomer values rms = u Å2 and reasonable correlations Ar almost directly above C2, shaded toward Cl EVAL used to calculate 4 closest heavy atom contacts *held fixed at ab initio values

22 Ar-(Z)-1-chloro-3,3,3-trifluoropropene (MHz)
Ar-CH35ClCHCF3 Ar-CH37ClCHCF3 A (36) (53) B (18) (36) C (14) (52) ΔJ/10-3 1.5874(13) 1.5780(31) ΔJK/10-3 (73) -2.815(14) ΔK/10-3 8.589(11) 8.564(21) δJ/10-3 (50) (95) δK/10-3 1.5081(64) 1.483(12) χaa (Cl) 28.038(12) 22.001(25) χbb (Cl) 9.581(10) 7.196(17) χcc (Cl) (86) (14) |χab|(Cl) -18.2(26) -8.8(71) |χac|(Cl) 24.31(89) 23.4(34) |χbc|(Cl) 46.718(63) 37.0(10) J range 2-14 2-12 Ka range 0-6 rms / kHz 8.726 7.739 3.7622(65) Å 3.9378(22) Å 3.6472(64) Å 3.4630(55) Å Kisiel’s STRFIT used to fit A, B, C of 2 isotopologues to r, θ, φ of Ar. Halopropene fixed at monomer values rms = 0.23 u Å2 and well-behaved correlations Ar nearly directly above C1 EVAL used to calculate 4 closest heavy atom contacts

23 Summary Microwave spectra are obtained and analyzed for 2,3,3,3- tetrafluoropropene and 3 isomers of chloro-3,3,3-trifluoropropene Monomer structural parameters determined for all but (E)-1-chloro- 3,3,3-trifluoropropene Microwave spectra are obtained and analyzed for argon complexes of all but (E)-1-chloro-3,3,3-trifluoropropene and argon atom located Work on (E)-1-chloro-3,3,3-trifluoropropene is on-going and is being initiated for both isomers of 1,3,3,3-tetrafluoropropene Comparison of structural trends is forthcoming 2,3,3,3-tetrafluoropropene – HCl has been observed and assigned Spectra of other halopropene/HX mixtures (X = F, Cl) have been obtained but spectra of complexes not yet assigned.


Download ppt "Department of Chemistry"

Similar presentations


Ads by Google