Presentation is loading. Please wait.

Presentation is loading. Please wait.

Experience with diagnostics

Similar presentations


Presentation on theme: "Experience with diagnostics"— Presentation transcript:

1 Experience with diagnostics
at FLASH Holger Schlarb DESY 22607 Hamburg Current compression scheme Slice measurements Electro-optic techniques Summary Outlook LCLS ICW /10 Holger Schlarb, DESY

2 Longitudinal phase space injector - present design -
MeV Superconducting TESLA module bunch compressor bunch compressor RF gun 12/20 MV/m < 60 fs Laser 4 - 5 MeV Small space charge on cathode sL= 4.4 ± 0.1 ps 10 20 30 40 50 Time (ps) LCLS ICW /10 Holger Schlarb, DESY Courtesy: M. Dohlus

3 Diagnostics for long. phase space
Laser THz Laser EO-container EO/CDR/CTR/TR Streak camera Laser phase CDR ACC 1 BC2 ACC 23 BC3 ACC 45 ISR Diag. Undulators TEO PP-laser Tosylab CSR/SR CDR LOLA ISR Diag. RF gun THz LOLA: transverse deflecting structure bunch profile, slice emittance & energy spread EO: electro-optic  bunch profile, timing (TEO) ISR: incoherent synchrotron radiation  energy spread & beam energy CRD: coherent radiation diagnostics (see Oliver Grimm)  longitudinal spectrum of e-beam (THz radiation, 10GHz-30THz) CTR : coherent transition radiation CSR: coherent synchrotron radiation CDR: coherent diffraction radiation LCLS ICW /10 Holger Schlarb, DESY

4 Transverse deflecting structure
collaboration between DESY and SLAC vertical deflecting RF structure (2.856 GHz) operated at zero crossing vertical size of beam at imaging screen  depends on bunch length 40 MW klystron power to “streak” the 0.5 GeV at TTF2 ‘Parasitical’ measurement using hor. kicker and off-axis screens Resolution: TTF2 ~ fs (depending on vertical beam size) Fast hor. kicker ~ z Vy(t) S-band 2 ~ z e - z 2 . 4 m 3.66 m b c p D y 6 ~20° Vertical streak LCLS ICW /10 Holger Schlarb, DESY TTF2: M. Ross et.al. + MIN DESY

5 Waveguide Beam Direction Load RF Input LOLA IV
LCLS ICW /10 Holger Schlarb, DESY Courtesy: M. Nagl, M. Ross et al.

6 Examples for bunch images
LOLA off: LOLA on: Typical streak strength: mm / ps Head Time resolution: vertical rms beam size (LOLA off) / streak time Tail LCLS ICW /10 Holger Schlarb, DESY

7 First attempts to compare TCAV & simulations
Image with LOLA x Simulation with CSR LCLS ICW /10 Holger Schlarb, DESY Courtesy: M. Dohlus (DESY)

8 Projected and slice emittance measurements
- early results - Slicing used for meas. Emittance (100%) time Mismatch factor B Longitudinal Slices of 250um or 154fs (100%) ~ 7.5um head … 4 um tail (90%) ~ 6.3 um head … 1.5 um tail Mismatch phases indicate gradual rotation of the slice rms –ellipses in hor. phase space along the bunch. Most likely caused by chromaticity. Mismatch phase Normal coordinates: LCLS ICW /10 Holger Schlarb, DESY Courtesy: M. Röhrs

9 LOLA in the FLASH beamline
Beam direction GUN ACC1 BC2 ACC2/ BC ACC4/ LOLA Dogleg UND1 … UND6 Q9ACC7 Q9/10ACC6 Q9/10ACC5 Q9/10ACC4 Horizontal Kicker Off-axis screen ACC5 ACC4 LOLA Slice emittance and centroid shifts Keep constant and small y at OTR -> six quads are scanned simultaneous -> check upstream optics (matching!) LCLS ICW /10 Holger Schlarb, DESY

10 Optics for slice emittance measurements
Scan of horizontal phase advance (~210 deg range) using the 6 quadrupoles Q9ACC4 – Q10ACC6 upstream of LOLA Streak at the screen is held constant (y = const) Values of the beta functions at the screen: ~5m - 10m Q9ACC4 LOLA OTR small large Courtesy: M. Röhrs LCLS ICW /10 Holger Schlarb, DESY

11 LOLA in the FLASH beamline
Beam direction GUN ACC1 BC2 ACC2/ BC ACC4/ LOLA Dogleg UND1 … UND6 Q9ACC7 Q9/10ACC6 Q9/10ACC5 Q9/10ACC4 Horizontal Kicker Off-axis screen ACC5 ACC4 LOLA Slice emittance and centroid shifts C1 C2 C3 C4 Slice energy spread & energy correlation Keep constant and small y at OTR -> six quads are scanned simultaneous -> check upstream optics (matching!) Large dispersion + small spot at OTR -> change of optics, open collimators -> check dispersion & streak calibration LCLS ICW /10 Holger Schlarb, DESY

12 Optics for energy-time correlation measurements
Objectives: small beta function values (~ 3m) , maximum streak, large dispersion at the screen (~290mm), Standard optics`: Optics for the measurements: LOLA OTR LCLS ICW /10 Holger Schlarb, DESY Courtesy: M. Röhrs

13 Screen Calibration Time axis (vertical): Measurement of the vertical beam position for different phases Energy axis (OTR 5ECOL): Measurement of the horizontal dispersion by variation of the current in the dipole LCLS ICW /10 Holger Schlarb, DESY Courtesy: M. Röhrs

14 On-crest operation: Longitudinal density profile
4.8 ps (BCs off) Head Tail rms-lengths: 3.8 ps (BCs on) Charge: 1 nC, Energy: 650 MeV LCLS ICW /10 Holger Schlarb, DESY Courtesy: M. Röhrs

15 On-crest operation: Longitudinal phase space
Bunch compressors on, Charge: 1 nC, Energy: 650 MeV 130 keV rms Dispersion at the screen: 290 mm Total rms energy spread: 0.09% (585 keV) rms slice spread < 0.02% (130 keV) limited by transverse beam size LCLS ICW /10 Holger Schlarb, DESY Courtesy: M. Röhrs

16 On-crest operation: Slice emittance
1σ-emittance, 100% of particles Systematic rms error of absolute values ~ 30% due to quadrupole gradient end energy errors But: ratios not affected! Projected emittance upstream of BC3: mm mrad Bunch compressors on, Charge: 1 nC, Energy: 650 MeV LCLS ICW /10 Holger Schlarb, DESY Courtesy: M. Röhrs

17 SASE at 13.7 nm (5µJ): Longitudinal profile
Parameter: Charge: 0.5 nC Energy: 677 MeV ACC1-phase: -9˚ ACC23-phase: -25˚ ACC45-phase: 0˚ Spike width: ~75 fs (FWHM) Resolution: ~20 fs Charge in spike: ~0.12 nC (23%) spike current: ~1.7 kA LCLS ICW /10 Holger Schlarb, DESY Courtesy: M. Röhrs

18 SASE at 13.7 nm: Longitudinal phase space
Energy spread in the spike: ~0.23% (1.6 MeV) Result for SASE operation at 31.4 nm (450 MeV): 0.4% peak energy spread, similar shape of energy-time correlation Dispersion: 233 mm; Time resolution: ~ 50 fs; Energy spread resolution: ~ 0.06% (380 keV) LCLS ICW /10 Holger Schlarb, DESY Courtesy: M. Röhrs

19 SASE at 13.7 nm: Slice emittance
Vertical rms width during the scan: < 220 µm (60 fs resolution) Projected emittance: mm mrad Similar result for SASE operation at 31.4nm LCLS ICW /10 Holger Schlarb, DESY Courtesy: M. Röhrs

20 Tomography: one slice Region used for tomography (duration: 50 fs)
LCLS ICW /10 Holger Schlarb, DESY Courtesy: M. Röhrs

21 Tomography: one slice Courtesy: M. Röhrs LCLS ICW2006 10/10
Holger Schlarb, DESY Courtesy: M. Röhrs

22 Overview on EO-techniques
Electro-optic Sampling : + simple (laser) system + arbitrary time window + high resolution - no single bunch Spectral Decoding: + simple (laser) system + high repetition rate - limited resolution (500fs) - distorted signal for e-bunches < 200fs Temporal Decoding: + large time window + high resolution (120fs, GaP) - mJ laser pulse energy - low repetition rate Spatial Decoding: + simple laser system + high repetition rate + high resolution (170fs, ZnTe) - more complex imaging optics Courtesy: B. Steffen et al

23 Results on temporal decoding - cross-check of theory -
Typical measurement at medium compression < 200 fs EO signals seen: typical 150 fs-200 fs (FWHM) with GaP, corresponds to fs for e-bunch due to crossed polarizer setup. Courtesy: B. Steffen et al (DESY) G. Berden (FELIX) S. Jamison et al (Dundee) LCLS ICW /10 Holger Schlarb, DESY

24 Time jitter measured by EO-SD
here 270 fs (rms) over 5 min incl. slow drifts without slow drifts typically <200 fs (rms) Courtesy: B. Steffen et al (DESY) LCLS ICW /10 Holger Schlarb, DESY

25 EO measurement and LOLA
Longitudinal profile for two different compression scenario LOLA EO Shortest pulse observed red: temporal decoding blue: squared signal from a transverse deflecting cavity Reasonable good agreement, cross-check for resolution! needs further analysis … Courtesy: B. Steffen et al (DESY) G. Berden (FELIX) S. Jamison et al (Dundee) LCLS ICW /10 Holger Schlarb, DESY

26 Timing between pump-probe laser & FEL
Transport of laser pulse critical TEO 100 shots Time [sec] t= 130 fs Time in Tunnel Pulse in fiber will be broadened (50 fs to 0,4 ns) and distorted due to high order dispersion (~100 pulses seen) 150m Courtesy: Armin Azima DESY D. Fritz/A. Cavalieri Michigan LCLS ICW /10 Holger Schlarb, DESY

27 Summary Operation with highly non-uniform compression causes significant difficulties for the standard diagnostic tool such as BPM Beam imaging screens Wire scanner Only access to relevant phase space volume possible with transverse deflecting structure but current setup requires tomographic quadrupole scans incompatible with SASE operation (on-line diagnostics) still time consuming Electro-Optical techniques come to there theoretical limits for GaP (~120fs FWHM) need still to be improved to provide operations tool (e.g. FB) TEO ready for Pump-probe experiments (timing!) LCLS ICW /10 Holger Schlarb, DESY

28 Outlook and future developments
2007 installation of optical replica synthesizer (< 5fs resolution) in cooperation with Uppsala & Uni. Stockholm preparation of longitudinal feedback system (mainly new monitor systems) allow for laser based beam manipulation and external seeding option: requires ~ fs rms arrival time stability incoming orbit energy exiting orbit time compression Fast FB A/ ACC1 Tarrial, A/ ACC1 LCLS ICW /10 Holger Schlarb, DESY

29 Principle of the Arrival Time Detection
sampling time of ADC The timing information of the electron bunch is transferred into an amplitude modulation. This modulation is measured with a photo detector and sampled by a fast ADC. MHz (54 MHz) LCLS ICW /10 Holger Schlarb, DESY Courtesy: F. Löhl

30 Beam Pick-up Output signal measured in EOS hutch
Isolated impedance-matched ring electrode installed in a „thick Flange“ Broadband signal with more than 5 GHz bandwidth Sampled at zero-crossing with laser pulse LCLS ICW /10 Holger Schlarb, DESY

31 Electro-Optical-Modulator (EOM)
RF signal bias voltage Commercially available with bandwidths up to 40 GHz (we use a 12 GHz version) Lithium Niobate LCLS ICW /10 Holger Schlarb, DESY

32 Test Bench for the Arrival-time Monitor System
LCLS ICW /10 Holger Schlarb, DESY Courtesy: F. Löhl

33 Measurement of Bunch Arrival Time over Bunch Train
Beam loading compensation off ~ 3 ps difference over bunch train ~ 3 ps difference over bunch train Beam loading compensation on (not optimized) dA/A ~ 0.2% ACC1 Bunch to bunch time jitter rms(tn – t(n+1)) ~ 30fs ~ 1 ps difference over bunch train LCLS ICW /10 Holger Schlarb, DESY Courtesy: F. Löhl

34 Same method used for chicane bpm
Large transverse dynamic range (5-15cm), but high resolution ~ <10 um Strip-line Left pickup Flat chicane chamber Right pickup beam ADC EOM1 - ADC EOM2 compare time of flight across stipline centering of measurement is perform by optical delay line LCLS ICW /10 Holger Schlarb, DESY Courtesy: K. Hacker

35 End


Download ppt "Experience with diagnostics"

Similar presentations


Ads by Google