Presentation is loading. Please wait.

Presentation is loading. Please wait.

Low-energy precision observables and the role of lattice QCD

Similar presentations


Presentation on theme: "Low-energy precision observables and the role of lattice QCD"β€” Presentation transcript:

1 Low-energy precision observables and the role of lattice QCD
Hartmut Wittig PRISMA Cluster of Excellence, Institute for Nuclear Physics and Helmholtz Institute Mainz PAVI 14 – From Parity Violation to Hadron Structure, Skaneateles, 17 July 2014

2 Low-Energy QCD and Standard Model tests
Structural properties of the nucleon: Form factors, structure functions, GPDs Contributions from gluons and the quark sea Precision tests of the Standard Model at low energies: QCD corrections to weak decay amplitudes Hadronic contributions to the muon (π‘”βˆ’2) Weak charge of the proton [Courtesy of D. Becker]

3 Beyond Perturbation Theory: Lattice QCD
Non-perturbative treatment; regularised Euclidean functional integrals lattice spacing: π‘Ž, π‘₯ πœ‡ = 𝑛 πœ‡ π‘Ž, π‘Ž βˆ’1 ∼ Ξ› UV finite volume: 𝐿 3 ⋅𝑇 Stochastic evaluation of 〈ΩβŒͺ via Markov process Simulation algorithm: Hybrid Monte Carlo [Duane et al., 1987] Strong growth of numerical cost near physical π‘š 𝑒 , π‘š 𝑑 Pion mass, i.e. lightest mass in the pseudoscalar channel: β‰ˆ500 MeV (2001) β‰ˆ130βˆ’200 MeV (2014) ⟢

4 Systematic Effects Lattice artefacts: Finite volume effects:
⟢ extrapolate to continuum limit from π‘Žβ‰ˆ0.05βˆ’0.12 fm Finite volume effects: Empirically: π‘š πœ‹ 𝐿 ≳4 sufficient for many purposes Unphysical quark masses: Chiral extrapolation to physical values of π‘š 𝑒 , π‘š 𝑑 becomes obsolete Inefficient sampling of SU(3) group manifold: Simulations trapped in topological sectors as π‘Žβ†’0 Use open boundary conditions in time direction [LΓΌscher & Schaefer, 2012]

5 Outline Status report: nucleon form factors and charge radii
Quark-disconnected diagrams Numerical techniques Strange form factors Further applications Scalar form factor of the pion Disconnected contributions to 𝒂 𝝁 𝐇𝐕𝐏 Conclusions

6 I. Nucleon Form Factors and Charge Radii

7 Nucleon form factors and charge radii
Lattice simulations: underestimate nucleon charge radii, axial charge 𝑔 𝐴 overestimate moments of PDFs: π‘₯ π‘’βˆ’π‘‘ Systematic effects not fully controlled Lattice artefacts Chiral extrapolation to physical pion mass Finite-volume effects β€œContamination” from excited states Quark-disconnected diagrams ignored [M. Lattice 2014] Dirac and Pauli charge radii determined from β€œplateau method”: Systematic effects not fully controlled Lattice artefacts Chiral extrapolation to physical pion mass Finite-volume effects β€œContamination” from excited states Quark-disconnected diagrams ignored

8 Statistical fluctuations in baryon correlators
Noise-to-signal ratio increases exponentially: Nucleon at rest: 𝑅 NS π‘₯ 0 ∼ e π‘š N βˆ’ π‘š πœ‹ π‘₯ 0 Pion at 𝑝 β‰ 0: 𝑅 NS π‘₯ 0 ∼ e π‘š πœ‹ 2 + 𝑝 2 βˆ’ π‘š πœ‹ π‘₯ 0 Excited-state contributions die out slowly Ground state dominates for π‘Žβ‰³0.5 fm

9 Correlator ratios Extract nucleon hadronic matrix elements from ratios of three- and two-point correlation functions, e.g. Statistical fluctuations impose 𝑑 𝑠 ≲1.3 fm Domination of the ground state doubtful

10 Methods for determining form factors
Plateau method: 𝑅 V π‘ž ,𝑑, 𝑑 𝑠 = 𝐺 E,M ( 𝑄 2 )+𝑂 𝑒 βˆ’Ξ”π‘‘ , 𝑒 βˆ’ Ξ” β€² 𝑑 𝑠 βˆ’π‘‘ Summed insertions: [Maiani et al. 1987, GΓΌsken et al. 1989, Bulava et al., Capitani et al. 2012] 𝑆 V 𝑑 𝑠 ≑ 𝑑=1 𝑑 𝑠 βˆ’1 𝑅 V π‘ž ,𝑑, 𝑑 𝑠 = 𝐾 V + 𝑑 𝑠 𝐺 E,M ( 𝑄 2 )+𝑂 𝑒 βˆ’Ξ” 𝑑 𝑠 , 𝑒 βˆ’ Ξ” β€² 𝑑 𝑠 Excited state contributions more strongly suppressed Determine 𝐺 E,M ( 𝑄 2 ) from linear slope of summed ratio Two-state fits: 𝑅 V π‘ž ,𝑑, 𝑑 𝑠 = 𝐺 E,M 𝑄 2 + 𝑐 E,M (1) 𝑒 βˆ’Ξ”π‘‘ + 𝑐 E,M (2) 𝑒 βˆ’ Ξ” β€² ( 𝑑 𝑠 βˆ’π‘‘) Stabilise fits by fixing the energy gaps Ξ” and Ξ” β€²

11 Methods for determining form factors
𝑅 V π‘ž ,𝑑, 𝑑 𝑠 = 𝐺 E,M 𝑄 2 + 𝑐 E,M (1) 𝑒 βˆ’Ξ”π‘‘ + 𝑐 E,M (2) 𝑒 βˆ’ Ξ” β€² ( 𝑑 𝑠 βˆ’π‘‘) Plateau method: 𝑐 E,M (1) = 𝑐 E,M (2) =0 Summation method: 𝑆 𝑉 ( π‘ž , 𝑑 𝑠 )= 𝐾 V + 𝑑 𝑠 𝐺 E,M ( 𝑄 2 ) [JΓ€ger, Rae et al., arXiv: , and in prep.]

12 Methods for determining form factors
𝑅 V π‘ž ,𝑑, 𝑑 𝑠 = 𝐺 E,M 𝑄 2 + 𝑐 E,M (1) 𝑒 βˆ’Ξ”π‘‘ + 𝑐 E,M (2) 𝑒 βˆ’ Ξ” β€² ( 𝑑 𝑠 βˆ’π‘‘) Plateau method: 𝑐 E,M (1) = 𝑐 E,M (2) =0 Chiral behaviour; comparison with LPHc [Brambilla et al., ] Summation method: 𝑆 𝑉 ( π‘ž , 𝑑 𝑠 )= 𝐾 V + 𝑑 𝑠 𝐺 E,M ( 𝑄 2 ) [JΓ€ger, Rae et al., arXiv: , and in prep.]

13 Methods for determining form factors
Chiral behaviour of 𝐺 𝐸 at 𝑄 2 =0.1 GeV: [JΓ€ger, Rae et al., arXiv: , and in prep.]

14 Summary: Nucleon electromagnetic form factors
Plateau method: 𝑑 𝑠 ≲1.2 fm not sufficient to rule out bias from excited state contributions Agreement with phenomenology improved by Detailed investigation of chiral behaviour and fits in progress Removing excited state β€œcontamination” Using near-physical pion masses Small finite-volume effects for π‘š πœ‹ 𝐿≳4 [Green et al., arXiv: ]

15 II. Quark-disconnected
Diagrams

16 Strangeness in the nucleon
Probe sea quark contributions to nucleon properties Nucleon mass: πœ‹π’© 𝜎-term Strangeness form factors: 𝐺 𝐸 𝑠 𝑄 2 , 𝐺 𝑀 𝑠 ( 𝑄 2 ) Strangeness contribution to the nucleon spin: 1 2 = 1 2 ΔΣ+ 𝐿 π‘ž +Δ𝐺, ΔΣ=Δ𝑒+Δ𝑑+Δ𝑠+… Contributions given entirely by quark-disconnected diagrams

17 Quark propagators in lattice QCD
Diagram includes π‘₯ Tr 𝛾 πœ‡ 𝑆(π‘₯,π‘₯) Quark propagator: 𝑆 π‘₯,𝑦 = 𝐷 βˆ’1 π‘₯,𝑦 , 𝐷: lattice Dirac operator Solve linear system: π·πœ™=πœ‚ ⟹ πœ™ π‘₯ = 𝐷 βˆ’1 (π‘₯,𝑦)πœ‚(𝑦) Point source: πœ‚ 𝑦 = 𝛿 𝑦0 ⟹ πœ™ π‘₯ = 𝐷 βˆ’1 π‘₯,0 ≑𝑆(π‘₯,0) β€œpoint-to-all” propagator Point source technique yields Tr[ 𝛾 πœ‡ 𝑆 0,0 ], i.e. only a single term Must perform 𝐿 π‘Ž 3 inversions to obtain full contribution

18 Stochastic β€œall-to-all” propagators
Stochastic sources: πœ‚ π‘Ÿ π‘₯ βˆˆπ‘ˆ 1 , π‘Ÿ=1,…, 𝑁 π‘Ÿ , 𝑁 π‘Ÿ =𝑂(10) 𝑁 π‘Ÿ ⟢∞: β‰ͺ πœ‚ π‘Ÿ † π‘₯ πœ‚ π‘Ÿ ( 𝑦 )≫= 𝛿 π‘₯ 𝑦 (stochastic average) Solve linear system: π·πœ™=πœ‚ ⟹ πœ™ (π‘Ÿ) π‘₯ = 𝐷 βˆ’1 π‘₯,𝑦 πœ‚ (π‘Ÿ) ( 𝑦 ) Further refinement: hopping parameter expansion [Bali, Collins, SchΓ€fer 2010] [GΓΌlpers, von Hippel, H.W. 2013] Stochastic noise parametrically suppressed Method introduces additional (i.e. stochastic) noise π‘₯ Trβ‰ͺ πœ‚ π‘Ÿ † π‘₯ 𝛾 πœ‡ πœ™ (π‘Ÿ) π‘₯ ≫ ≃ π‘₯ 𝛿 π‘₯ 𝑦 Tr 𝛾 πœ‡ 𝑆 π‘₯,𝑦 Stochastic average yields:

19 Strange form factors Doi et al., Phys Rev D80 (2009) 094503
Two-flavour QCD; 𝑂 π‘Ž improved Wilson quarks; β‹…32 Single lattice spacing: π‘Ž=0.121 fm π‘š πœ‹ =600βˆ’840 MeV, π‘š πœ‹ min 𝐿=5.9, πΏβ‰ˆ2 fm 𝑁 cfg =800 gauge configurations; 𝑁 src =64βˆ’82 point sources Stochastic 𝑍(4) sources for disconnected part; 𝑁 r =600βˆ’800

20 Strange form factors Doi et al., Phys Rev D80 (2009) 094503
Fit 𝑄 2 -dependence to monopole / dipole form Use summation method to determine form factors Results: 𝐺 M 𝑠 0 =βˆ’0.017(25)(07) 𝑄 2 =0.1 GeV: 𝐺 M 𝑠 Q 2 =βˆ’ , 𝐺 E 𝑠 Q 2 =0.0022(19) Systematic uncertainties estimated from Monopole/dipole ansatz for 𝑄 2 -dependence Different fit formulae for chiral extrapolation Estimate residual excited state contributions

21 Strange form factors Babich et al., Phys Rev D85 (2012) 054510
Two-flavour QCD; 𝑂 π‘Ž improved Wilson fermions; β‹…64 Anisotropic lattice: π‘Ž 𝑠 =0.108 fm, π‘Ž 𝑠 π‘Ž 𝑑 β‰ˆ3 Single pion mass π‘š πœ‹ β‰ˆ416 MeV, π‘š πœ‹ 𝐿=5.9, πΏβ‰ˆ2.6 fm, π‘‡β‰ˆ2.3 fm 𝑁 cfg =863 gauge configurations SU(3) unitary noise + β€œdilution” to reduce stochastic noise; 𝑁 r =864

22 Strange form factors Babich et al., Phys Rev D85 (2012) 054510
𝐺 𝐸 𝑠 , 𝐺 M 𝑠 compatible with zero at the permille / percent level (statistical error)

23 Summary: Strange form factors
Calculation far more demanding compared to electromagnetic form factors, due to disconnected diagrams Many technical improvements Gauge noise could still be large, even if stochastic noise is under control Stochastic sources + β€œdilution” Hopping parameter expansions No significant deviation from zero observed so far Compute disconnected diagrams on GPUs

24 III. Further Applications

25 Scalar form factor and radius of the pion
Definition; charge radius: π‘ž 2 = 𝑝 𝑓 βˆ’ 𝑝 𝑖 2 =βˆ’ 𝑄 2 𝐹 𝑠 0 ≑ 𝜎 πœ‹ (pion 𝜎-term) Chiral expansion: β„“ 4 =4.783Β±0.097⟹ π‘Ÿ 2 𝑠 =0.645Β±0.017 f m 2 Phenomenological determination from πœ‹πœ‹-scattering [Colangelo, Gasser & Leutwyler, Nucl Phys B603 (2001) 125] π‘Ÿ 2 𝑠 =0.61Β±0.04 f m 2

26 Scalar form factor and radius of the pion
𝑂 π‘Ž – improved Wilson fermions π‘Ž=0.063 fm, π‘š πœ‹ =280βˆ’650 MeV Disconnected contribution evaluated using stochastic sources and HPE [GΓΌlpers, von Hippel, H.W., PRD89 (2014) ] Fit to NLO: π‘Ÿ 2 s =0.635Β± stat f m 2 Inclusion of disconnected part crucial for agreement with πœ‹πœ‹-scattering

27 Hadronic vacuum polarisation on the Lattice
Lattice approach: evaluate convolution integral over Euclidean momenta Time-momentum representation: Method yields Ξ  𝑄 2 ≑Π 𝑄 2 βˆ’Ξ (0) without extrapolation to 𝑄 2 =0 Must determine vector correlator 𝐺 π‘₯ 0 for π‘₯ 0 β†’βˆž Include quark-disconnected contribution

28 Hadronic vacuum polarisation on the Lattice
Electromagnetic current: 𝑗 πœ‡ ℓ𝑠 = 𝑗 πœ‡ β„“ + 𝑗 πœ‡ 𝑠 = 𝑒 𝛾 πœ‡ π‘’βˆ’ 𝑑 𝛾 πœ‡ 𝑑 ( 𝑒 𝛾 πœ‡ 𝑒+ 𝑑 𝛾 πœ‡ π‘‘βˆ’2 𝑠 𝛾 πœ‡ 𝑠) 𝐺 π‘₯ 0 = 5 9 𝐺 con β„“ π‘₯ 𝐺 con 𝑠 π‘₯ 𝐺 disc ℓ𝑠 ( π‘₯ 0 ) [V. Lattice14] Error on disconnected contribution dominates for π‘₯ 0 ≳1.5 fm

29 Hadronic vacuum polarisation on the Lattice
Disconnected contribution for π‘₯ 0 β†’βˆž: 𝐺 π‘₯ 0 = 𝐺 𝜌𝜌 π‘₯ 0 (1+𝑂 𝑒 βˆ’ π‘š πœ‹ π‘₯ 0 ) 1 9 𝐺 𝑑isc ℓ𝑠 𝐺 𝜌𝜌 = 𝐺 π‘₯ 0 βˆ’ 𝐺 𝜌𝜌 ( π‘₯ 0 ) 𝐺 𝜌𝜌 ( π‘₯ 0 ) βˆ’ 𝐺 con 𝑠 π‘₯ 0 𝐺 𝑐on β„“ π‘₯ π‘₯ 0 β†’βˆž βˆ’ 1 9 Loss of signal at π‘₯ 0 ≳1.5 fm provides upper bound on error Disconnected contribution reduces Ξ  ( 𝑄 2 ) by at most 2%

30 Summary Nucleon electromagnetic form factors and charge radii:
Large noise-to-signal ratio in baryonic correlation functions Systematic effects may be hidden in the data Good progress in reconciling experiment and lattice calculations Strange form factors of the nucleon: Lattice calculations mostly exploratory Promising new techniques to evaluate disconnected diagrams Requires huge statistics to address systematics Hadronic vacuum polarisation contribution to the muon (g – 2): Improve statistical accuracy Better control over large- π‘₯ 0 , low- 𝑄 2 regime required Good prospects for quantifying disconnected contribution Hadron form factors from O(a) improved Wilson quarks


Download ppt "Low-energy precision observables and the role of lattice QCD"

Similar presentations


Ads by Google