Download presentation
Presentation is loading. Please wait.
Published byProsper Earl Golden Modified over 6 years ago
1
Rotary Spectra Separate vector time series (e.g., current or wind data) into clockwise and counter-clockwise rotating circular components. Instead of having two Cartesian components (u, v) we have two circular components (A-, - ; A+, + ) Suppose we have de-meaned u and v components of velocity, represented by Fourier Series (one coefficient for each frequency): These can be written in complex form (dropping subindices and summation) as:
2
In addition, write w as a sum of clockwise and counter-clockwise rotating components:
Remember: e i t = cos(t) + i sin( t) rotates counter-clockwise in the complex plane, and e -i t = cos( t) – i sin( t) rotates clockwise. Equating the coefficients of the cosine and sine parts, we find: A- A+
3
Magnitudes of the rotary components :
The - and + components rotate at the same frequency but in opposite directions. → Sometimes they will reinforce each other (pointing in the same direction) and sometimes they will oppose each other (pointing in opposite direction) tending to cancel each other. Major axis = (A++ A-) minor axis = (A+- A-)
4
Major axis = (A++ A-) minor axis = (A+- A-) where: and the components of the rotary spectrum:
5
La Paz Lagoon, Gulf of California
v Small minor axis Oriented ~40º from East Slope ~ 0.84
6
a b c d
7
Fourier Coefficients
8
S+ S-
9
Fortnightly (0.068 cpd) S+ S-
10
S+ S-
11
where:
12
Major axis = (A++ A-) minor axis = (A+- A-)
13
Ellipticity = minor / major
14
Examples: Miles Sundermeyer notes (U MASS)
15
Examples: Miles Sundermeyer notes (U MASS)
16
Examples: Miles Sundermeyer notes (U MASS)
17
Examples: Miles Sundermeyer notes (U MASS)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.