Download presentation
Presentation is loading. Please wait.
1
Functions
2
I. Definitions
3
-7 -6 -2 -4 Relation: A set of ordered pairs ( , ) 1 3 ( , ) 9 ( , ) 8
( , ) 1 3 ( , ) 9 -7 ( , ) 8 5 ( , ) -6 -2 ( , ) -4
4
-7 -6 -2 -4 Relation: A set of ordered pairs ( , ) 1 3 ( , ) 9 ( , ) 8
( , ) 1 3 ( , ) 9 -7 ( , ) 8 5 ( , ) -6 -2 ( , ) -4 Domain: The set of first terms of each pair.
5
-7 -6 -2 -4 Relation: A set of ordered pairs ( , ) 1 3 ( , ) 9 ( , ) 8
( , ) 1 3 ( , ) 9 -7 ( , ) 8 5 ( , ) -6 -2 ( , ) -4 Range: The set of second terms of each pair.
6
Representations of Relations
1, ,−7 8, −9,−7 −4, 0 Ordered Pairs
7
Representations of Relations
X Y 1 3 -7 9 8 5 -6 -2 -4 Table
8
Representations of Relations
Graph
9
Representations of Relations
1 3 9 -7 8 5 -6 -2 -4 Mapping
10
Find the domain and range.
𝐷𝑜𝑚𝑎𝑖𝑛: 0 , ∞ 𝑅𝑎𝑛𝑔𝑒: 0 , ∞
11
Find the domain and range.
𝐷𝑜𝑚𝑎𝑖𝑛:(−∞, ∞)
12
Find the domain and range.
𝑦=−2 𝐷𝑜𝑚𝑎𝑖𝑛: 0 , ∞ 𝑅𝑎𝑛𝑔𝑒: −2 , ∞
13
Find the domain and range.
𝐷𝑜𝑚𝑎𝑖𝑛: −∞ , ∞ 𝑅𝑎𝑛𝑔𝑒: −∞ , ∞
14
Find the domain and range.
𝑦=2 𝑦=−3 𝐷𝑜𝑚𝑎𝑖𝑛: −∞ , ∞ 𝑅𝑎𝑛𝑔𝑒: −3, 2
15
Now it’s your turn
16
Find the domain and range.
B. C. D.
17
Find the domain and range.
𝑥=−4 𝐷𝑜𝑚𝑎𝑖𝑛:−4 𝑅𝑎𝑛𝑔𝑒: −∞ , ∞
18
Find the domain and range.
𝑦=3 𝐷𝑜𝑚𝑎𝑖𝑛: −∞ , ∞ 𝑅𝑎𝑛𝑔𝑒:3
19
Find the domain and range.
𝐷𝑜𝑚𝑎𝑖𝑛: −∞,0 ∪ 0,∞ OR 𝑥≠0
20
Find the domain and range.
𝐷𝑜𝑚𝑎𝑖𝑛: −∞,0 ∪ 0,∞ OR 𝑥≠0 𝑅𝑎𝑛𝑔𝑒: −∞,0 ∪ 0,∞ OR 𝑦≠0
21
Find the domain and range.
𝐷𝑜𝑚𝑎𝑖𝑛: 0,∞ 𝑅𝑎𝑛𝑔𝑒: −∞,∞
22
II. Functions
23
-6 -5 -7 -2 Functions: A relation with no repeated domain members
( , ) 3 ( , ) 4 -6 ( , ) 1 9 ( , ) -5 -7 ( , ) -2 8 Function
24
-4 -5 -9 -8 Functions: A relation with no repeated domain members
( , ) 7 3 ( , ) -4 ( , ) 7 1 ( , ) -5 -9 ( , ) -8 1 Not a Function
25
The Vertical Line Test Function Not a Function
26
Now it’s your turn
27
Function or Naw?
28
Function or Naw?
29
Function or Naw?
30
Function or Naw?
31
Function or Naw?
32
Function or Naw?
33
` Function or Naw?
34
III. Evaluating Functions
35
𝑓 𝑥 =2𝑥+3 Evaluate and simplify 𝑓(−3)
36
𝑓 𝑥 =2𝑥+3 𝑓 −3 =2⋅ −3 +3 𝑓 −3 =−6+3 𝑓 −3 =−3
37
𝑔 𝑥 =− 𝑥 3 +3𝑥 Evaluate and simplify 𝑔(−2)
38
𝑔 𝑥 =− 𝑥 3 +3𝑥 𝑔 −2 =− − −2 𝑔 −2 =− −8 −6
39
𝑔 −2 =8−6 𝑔 −2 =2 𝑔 −2 =− −8 −6
40
𝑔 𝑥 =− 𝑥 3 +3𝑥 𝑔 10 =− ⋅10 𝑔 10 =− 𝑔 10 =−970
41
ℎ 𝑥 = −3𝑥+6 Evaluate and simplify ℎ(5)
42
ℎ 𝑥 = −3𝑥+6 ℎ 5 = −3⋅5+6 ℎ 5 = −15+6
43
ℎ 5 = −9 ℎ 5 =9 ℎ 5 = −15+6
44
𝑦 𝑥 =𝑙𝑜𝑔 𝑥 Evaluate and simplify 𝑦(1000)
45
𝑦 𝑥 =𝑙𝑜𝑔 𝑥 𝑦 1000 =𝑙𝑜𝑔 1000 𝑦 1000 =3
46
𝑝 𝑥 = 4 𝑥 Evaluate and simplify 4 8
47
𝑝 𝑥 = 4 𝑥 𝑝 8 = 4 8 𝑝 8 =65536
48
Now it’s your turn
49
𝑓 𝑥 =2𝑥+3 𝑓 7 =2⋅7+3 𝑓 7 =14+3 𝑓 7 =17
50
𝑓 7 𝑔 8 ℎ −4 𝑦 𝑝 −3
51
𝑓 𝑥 =2𝑥+3 𝑓 7 =2⋅7+3 𝑓 7 =14+3
52
𝑓 7 =17 𝑓 7 =14+3
53
𝑔 𝑥 =− 𝑥 3 +3𝑥 𝑔 8 =− 𝑔 8 =−512+24
54
𝑔 8 =−488 𝑔 8 =−512+24
55
ℎ 𝑥 = −3𝑥+6 ℎ −4 = −3⋅−4+6 ℎ −4 = 12+6
56
ℎ −4 = 18 ℎ −4 = 12+6 ℎ −4 =18
57
ℎ −4 = 18 ℎ −4 = 18 ℎ −4 = 12+6
58
𝑦 𝑥 =𝑙𝑜𝑔 𝑥 𝑦 =𝑙𝑜𝑔 𝑦 =−4
59
𝑝 𝑥 = 4 𝑥 𝑝 −3 = 4 −3 𝑝 −3 =
60
IV. Maximums & Minimums
61
Relative Maximum: The largest function (y) value across a finite domain Relative Minimum: The smallest function (y) value across a finite domain
62
Relative Maximum: Relative Minimum:
63
Relative Maximum:
64
Relative Minimum:
65
V. Odd & Even Functions
66
The function 𝑓 𝑥 is an 𝐨𝐝𝐝 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 if:
𝑓 −𝑥 =−𝑓 𝑥
67
The function 𝑓 𝑥 is an 𝐞𝐯𝐞𝐧 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 if:
𝑓 −𝑥 =𝑓 𝑥
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.