Download presentation
Presentation is loading. Please wait.
1
Bipolar Processes Description
EE 330 Bipolar Processes Description
2
Bipolar Process Description
p-substrate epi 2
3
Components Shown Vertical npn BJT Lateral pnp BJT JFET
Diffusion Resistor Diode (and varactor) Note: Features intentionally not to scale to make it easier to convey more information on small figures 3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11
11
12
12
13
Area emitter factor is used to model other devices
In contrast to the MOSFET where process parameters are independent of geometry, the bipolar transistor model is for a specific transistor ! Area emitter factor is used to model other devices Often multiple specific device models are given and these devices are used directly 13
14
D C A A’ B’ B C’ Top View D’ 14
15
Layer Mappings n+ buried collector isolation diffusion (p+)
p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 15
16
A A’ B’ B Dimmed features with A-A’ and B-B’ cross sections 16
17
A A’ B’ B 17
18
E C B vertical npn E B C lateral pnp C E C B E B 18
19
Diode (capacitor) G S D L W Resistor G D S n-channel JFET 19
20
Detailed Description of First Photolithographic Steps Only
Top View Cross-Section View 20
21
A A’ B’ B n+ buried collector 21
22
Mask Numbering and Mappings
n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 22
23
Mask 1: n+ buried collector
23
24
n+ buried collector mask Exposure Develop
Photoresist n+ buried collector mask Exposure Develop A-A’ Section B-B’ Section 24
25
Implant A-A’ Section B-B’ Section 25
26
Strip Photoresist A-A’ Section B-B’ Section 26
27
p-substrate A A’ n+ buried collector n+ buried collector B’ B 27
28
Grow Epitaxial Layer A-A’ Section B-B’ Section
Note upward and downward diffusion of n+ buried collector B-B’ Section 28
29
Grow Epitaxial Layer p-substrate A’ A n+ buried collector
29
30
A A’ B’ B Isolation Diffusion 30
31
Mask Numbering and Mappings
n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 31
32
Mask 2: Isolation Deposition/Diffusion
B’ B 32
33
Isolation Deposition/Diffusion
A-A’ Section B-B’ Section 33
34
Isolation Diffusion p-substrate A’ A A A’ n+ buried collector
34
35
A A’ B’ B p-base diffusion 35
36
Mask Numbering and Mappings
n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 36
37
Mask 3: p-base diffusion
37
38
p-base Diffusion A-A’ Section B-B’ Section 38
39
p-base Diffusion p-substrate A’ A A A’ n+ buried collector
39
40
A A’ B’ B n+ emitter diffusion 40
41
Mask Numbering and Mappings
n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 41
42
Mask 4: n+ emitter diffusion
B’ B 42
43
n+ emitter Diffusion A-A’ Section B-B’ Section 43
44
n+ emitter Diffusion p-substrate A’ A’ A A n+ buried collector
44
45
Oxidation A-A’ Section B-B’ Section 45
46
Oxidation p-substrate A’ A A n+ buried collector n+ buried collector B
46
47
A A’ B’ B contacts 47
48
Mask Numbering and Mappings
n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 48
49
Mask 5: contacts A A’ B’ B 49
50
Contact Openings A-A’ Section B-B’ Section 50
51
Contact Openings p-substrate A’ A A A’ n+ buried collector
51
52
A A’ B’ B metal 52
53
Mask Numbering and Mappings
n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 53
54
Mask 6: metal A A’ B’ B 54
55
Metalization A-A’ Section B-B’ Section 55
56
Pattern Metal A-A’ Section B-B’ Section 56
57
Metalization p-substrate A’ A A A’ A A’ n+ buried collector
57
58
Pattern Metal p-substrate A A’ A A’ B’ B n+ buried collector
58
59
E B C lateral pnp E C B vertical npn A-A’ Section C B E B C E
B-B’ Section 59
60
G D S p-channel JFET A-A’ Section B-B’ Section 60
61
E C B vertical npn E B C lateral pnp C E C B E B 61
62
Diode (capacitor) G S D L W Resistor G D S n-channel JFET 62
63
Mask Numbering and Mappings
n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 63
64
Pad and Pad Opening p-substrate Epitaxial Layer Oxidation Metalization
Protective Layer Pad Opening Mask Pad Opening 64
65
End of Lecture 19
66
The vertical npn transistor
Emitter area only geometric parameter that appears in basic device model Transistor much larger than emitter Multiple-emitter devices often used (TTL Logic) and don’t significantly increase area
67
Enhancement and Depletion Devices
Enhancement Mode n-channel devices VT > 0 Enhancement Mode p-channel devices VT < 0 Depletion Mode n-channel devices Depletion Mode p-channel devices
68
The JFET In triode region under reverse bias (channel thins)
69
The JFET In saturation (pinch-off) region under reverse bias and large VDS (channel pinches off)
70
The Schottky Diode Metal-Semiconductor Junction
One contact is ohmic, other is rectifying Not available in all processes Relatively inexpensive adder in some processes Lower cut-in voltage than pn junction diode High speed
71
The MESFET Metal-Semiconductor Junction for Gate
Drain and Source contacts ohmic, other is rectifying Usually not available in standard CMOS processes Must not forward bias very much Lower cut-in voltage than pn junction diode High speed
72
MOS and Bipolar Area Comparisions
How does the area required to realize a MOSFET compare to that required to realize a BJT?
75
Consider Initially the Emitter in the BJT surrounded by a base region
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 Consider Initially the Emitter in the BJT surrounded by a base region 10 15 20 25 30 35 40 45 50 55
76
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 15 20 4l 25 30 3l 35 40 45 50 55
77
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 15 20 25 30 3l 2l 35 40 45 50 55
78
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 15 20 19l 25 30 3l 2l 35 40 45 50 55
79
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 15 20 23l 25 2l 30 3l 2l 35 40 45 50 55
80
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 47l 10 15 20 23l 25 14l 14l 30 3l 2l 35 40 45 50 55
81
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 51l 10 15 20 23l 25 14l 14l 14l 30 14l 3l 2l 35 40 45 50 55
82
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 51l 10 15 20 23l 14l 25 14l 30 3l 2l 35 40 45 50 55
83
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 51l 10 15 20 23l 14l 25 14l 30 3l 4l 2l 35 40 45 50 55
84
Note: 26l required Between p-base and isolation diffusion NOT TO SCALE
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 61l 10 15 20 14l 12l 25 19l 14l 2l 2l 2l 30 6l 3l 4l 2l 35 NOT TO SCALE Note: 26l required Between p-base and isolation diffusion 40 45 50 55
85
Note: Not to vertical Scale
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 71l 5 10 Note: Not to vertical Scale 14l 15 20 19l 25 12l 26l 44l 2l 30 6l 3l 2l 2l 35 Note: 26l required Between p-base and isolation diffusion 40 45 50 55
86
Note: Not to vertical Scale
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 71l 5 44l 10 Note: Not to vertical Scale 4l 15 20 25 12l 26l 2l 30 6l 3l 2l 2l 35 Note: 26l required Between p-base and isolation diffusion 40 45 50 55
87
Note: Not to vertical Scale
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 71l 5 44l 10 15 75l 20 48l 25 30 35 40 Note: Not to vertical Scale 45 50 55
88
Note: Not to vertical Scale
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 15 75l 20 48l 25 30 35 40 Bounding Area = 3600l2 45 Note: Not to vertical Scale 50 55
89
Comparison with Area for n-channel MOSFET in Bulk CMOS
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 Comparison with Area for n-channel MOSFET in Bulk CMOS 15 20 16l 25 13l 30 35 Bounding Area = 208l2 40 45 50 55
90
Minimum-Sized MOSFET Bounding Area = 168l2 Active Area = 6l2 14l 12l 1
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 Minimum-Sized MOSFET 15 20 14l 12l 25 30 35 Bounding Area = 168l2 Active Area = 6l2 40 45 50 55
91
Note: Not to vertical Scale
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 15 75l 20 48l 25 30 35 40 MOSFET BJT 45 50 Note: Not to vertical Scale 55
92
Area Comparison between BJT and MOSFET
BJT Area = 3600 l2 n-channel MOSFET Area = 168 l2 Area Ratio = 21:1
93
End of Lecture 17
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.