Presentation is loading. Please wait.

Presentation is loading. Please wait.

Professor Ronald L. Carter

Similar presentations


Presentation on theme: "Professor Ronald L. Carter"— Presentation transcript:

1 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/
EE5342 – Semiconductor Device Modeling and Characterization Lecture 12 February 26, 2010 Professor Ronald L. Carter

2 ln ia ln(IKF) ln[(IS*IKF) 1/2] ln(ISR) ln(IS) va= Vext VKF
Vext - vd = ia*Rs low level injection ln ia ln(IKF) Effect of Rs ln[(IS*IKF) 1/2] Effect of high level injection ln(ISR) Data ln(IS) va= Vext recomb. current VKF L10 February 17

3 Static Model Equations for I-V Parameter Extraction
In the region where: id ~ ISeff[exp {vd/(NeffVt)} – 1] {did/dvd}/iD = d[ln(id)]/dvd = 1/(NeffVt), so {dvd/d[ln(id)]}/Vt = (id,vd), and exp{ln(id) – vd/(NeffVt)} = (id,vd). Note: iD, Vt, etc., are normalized to 1A, 1V, resp. L10 February 17

4 Static Model Equations for C-V Parameter Extraction
The Capacitance-Voltage model eqn. is: Cj = CJO[1 - vd/VJ]-M {dvd/d[ln(Cj)]} = -(1/M)(1 - vd/VJ) Experimentally plot y = {dvd/d[ln(Cj)]} vs. vd The slope estimates -1/M, the vd-axis intercept estimates VJ. On the Cj vs. vd plot, the Cj-axis intercept is CJO L10 February 17

5 PiN Diode PiN: Na >> Nint (= N-) & Nint << Nd
Wi = Intrinsic region (metall.) width Em,P-T = Peak field mag. when xn = Wi Vbi = fi = Vtln(NaNd/ni2) Vbi,int = fi,int = Vtln(NaNint/ni2) VHL = Vtln(Nd/Nint), the offset at N+N- Vbi = Vbi,int + VHL VPT = applied voltage when xn = Wi L12 02/26/10

6 PiN Diode Depletion Fields
Normalized Position, x’ = x/Wi Normalized Field, E/Em,P-T dx’p dx’n x’n -x’p L12 02/26/10

7 PiN Diode Depletion Conditions

8 CV data and N(x) calculation

9 Bipolar junction transistor (BJT)
E B C VEB VCB Charge neutral Region Depletion Region The BJT is a “Si sandwich” Pnp (P=p+,p=p-) or Npn (N=n+, n=n-) BJT action: npn Forward Active when VBE > 0 and VBC < 0 L12 02/26/10

10 BJT coordinate systems
z x”c x” WB WB+WC -WE xB x x’E x’ Charge neutral Region Depletion Region Base Collector Emitter L12 02/26/10

11 BJT boundary and injection cond (npn)
L12 02/26/10

12 BJT boundary and injection cond (npn)
L12 02/26/10

13 IC npn BJT (*Fig 9.2a) L12 02/26/10

14 npn BJT bands in FA region
q(VbiE-VBE ) q(VbiC-VBC ) qVBE qVBC injection high field L12 02/26/10

15 Coordinate system - prototype npn BJT (Fig 9.8*)
L12 02/26/10

16 Notation for npn & pnp BJTs
NE, NB, NC E, B, and C doping (maj) xE, xB, xC E, B, and C CNR widths DE, DB, DC Dminority for E, B, and C LE, LB, LC Lminority for E, B, and C (L2min = Dmin tmin) The minority carrier lifetimes in the E, B, and C regions are tE0, tB0, & tC0 L12 02/26/10

17 Notation for npn BJTs only
pEO, nBO, pCO: E, B, and C thermal equilibrium minority carrier conc pE(x’), nB(x), pC(x’’): positional mathe- matical function for the E, B, and C total minority carrier concentrations The excess carrier concentrations dpE(x’), dnB(x), dpC(x’’) are the positional mathematical functions in the E, B, and C L12 02/26/10

18 Notation for pnp BJTs only
nEO, pBO, nCO: E, B, and C thermal equilibrium minority carrier conc nE(x’), pB(x), nC (x’’): positional mathe- matical function for the E, B, and C total minority carrier concentrations dnE(x’), dpB(x), dnC(x’’): positional ma- thematical function for the excess minority carriers in the E, B, and C L12 02/26/10

19 npn BJT boundary conditions
L12 02/26/10

20 Emitter solution in npn BJT

21 Base solution in npn BJT

22 Collector solution in npn BJT

23 Hyperbolic sine function

24 npn BJT regions of operation
VBC Reverse Active Saturation VBE Forward Active Cutoff L12 02/26/10

25 npn FA BJT minority carrier distribution (Fig 9.4*)
L12 02/26/10

26 npn RA BJT minority carrier distribution (Fig 9.11a*)
L12 02/26/10

27 npn cutoff BJT min carrier distribution (Fig 9.10a*)
L12 02/26/10

28 npn sat BJT minority carrier distribution (Fig 9.10b*)
L12 02/26/10

29 Defining currents in FA mode npn BJT (Fig 9.13*)
L12 02/26/10

30 References 1 OrCAD PSpice A/D Manual, Version 9.1, November, 1999, OrCAD, Inc. 2 Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993. * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. L12 02/26/10


Download ppt "Professor Ronald L. Carter"

Similar presentations


Ads by Google