Presentation is loading. Please wait.

Presentation is loading. Please wait.

Eurostat EDIT 2012 Functional Presentation.

Similar presentations


Presentation on theme: "Eurostat EDIT 2012 Functional Presentation."— Presentation transcript:

1 Eurostat EDIT 2012 Functional Presentation

2 EDIT Introduction EDIT allows users to import data, perform a set of predefined operations on the imported datasets and export data resulted from these processing operations. Validations / Computations Record Vertical Hierarchical Dataset Operations Copy, Merge, Alter, Aggregate, etc see Scripting manual.

3 EDIT Introduction (2) Data Validation tool, allowing users to import data, run validation programs and export results The validation process relies on a custom Scripting Language Web-based User Interface Data and Metadata isolated into independent Domains

4 Specialised functions
Time series outliers (Terror) Berthelot-Hidiroglu Sigma Gap Programmable functions

5 Technology Overview Web Based Interface RDBMS (Oracle and PostgreSQL)
Unified interface for both the local version and the server deployment EUROSTAT Look & Feel Light interface, simplified workflows RDBMS (Oracle and PostgreSQL) ECAS or local authentication ( end year: SMS)

6 EDIT Integration Capabilities
Exposes full API as Web Services Integrated with EDAMIS detect incoming files and process them in unattended mode publish validation results to the Feedback Channel Integrated with the SDMX Registry fetch DSDs into EDIT structures load codelists from the Registry

7 EDAMIS Integration EDAMIS can send data to EDIT by placing the files in a configurable location EDIT detects metadata based on the EDAMIS naming convention EDIT performs the processing in unattended mode EDIT acts as a client for the EDAMIS Feedback Channel Web Service in order to publish the results of a job execution

8 SDMX Registry Integration
EDIT can import DSDs or codelists EDIT acts as a client for the SDMX Registry Web Services in order to fetch DSD files and codelists data The DSD file is broken down into EDIT components Key families are translated to EDIT formats Codelists are translated to EDIT Lookups An EDIT Program is created performing lookup validations and basic checks on the dimension fields A specific importer has been implemented to process codelist data

9 EVE Integration EVE Rules can be imported into EDIT or executed from an external file during the EDIT Job Execution An EDIT component can translate EVE rules defined in XML files to EDIT Scripting Language

10 Important principles 1) From Microdata to macrodata
2) Scripting principle (symbols/placeholders) 3) Editing seen as a case of complex computations 4) Multidataset approach 5) Cube approach in computations

11 Rule layout Rule name Rule type Rule body
Error part (msg,selected vars) Then compute part Else compute part

12 EDIT Scripting Language Capabilities
Custom Scripting Language designed specifically for data validation Tries to be as simple as possible and still flexible enough to fit the requirements of any existing domain Allows the definition of Formats and validation Programs Formats (Dataset Definitions) describe the structure of the data (Format Definition Language) Validation Programs describe the validation rules and are composed from a set of steps with inputs and outputs (Program Definition Language)

13 EDIT Standalone Installation
Standalone Installation supported for Windows XP and Windows 7 Simple installation wizard Shortcuts are created in the Start Menu

14 EDIT User Types User Programmer Administrator
Executes jobs on datasets Programmer Manages the Metadata needed by the User to execute jobs Sets up the unattended mode configuration Administrator Manages users and permissions

15 User Module Functionality
Change Password Change the password of the user(when not logged through ECAS) Dataset Import/Export Import and export data to and from the System Monitor any ongoing import/export processes Job Execution Execute validation programs on imported datasets View the results of a Job Execution

16 User Workflow Data Import Job Execution Job Results Data Export

17 Programming Module Main Functional Capabilities
Formats and Programs Definition Define Metadata using the editors in the User Interface Import/Export Metadata from/to external TXT files Import/Export to Oracle Data Import/Export Import Auxiliary Data (lookup datasets) Job Execution Execute validation programs on imported datasets

18 Programming Module Workflows
Format Definition Program Definition Auxiliary Data Import

19 Programming Module - Format Definition
Write FDL Script into a Text File Open EDIT Client Import FDL File using the Format Import Functionality Open EDIT Client Access the Format Editor Functionality Define the Format using the Editor

20 Programming Module – Program Definition
Write PDL Script into a Text File Open EDIT Client Import PDL File using the Program Import Functionality Open EDIT Client Access the Program Editor Functionality Define the Program using the Editor

21 Programming Module – Import Auxiliary Data
Open EDIT Client Access Dataset Import Functionality Define and Execute Import Process

22 Programming Module – Unattended Mode Configuration
Configure Incoming Data Locations Create Metadata and Import Templates Configure Dynamic Domain Programs

23 Administration Module Main Functional Capabilities
User Management Manage the Users and their permissions User Group Management Manage the User Groups and their members Domain Management Manage the Domains

24 Dataset format CVTS FORMAT cvts_4 { DESCRIPTION "CVTS Format"; FIELDS { COUNTRY { DESCRIPTION "None"; CAPTION "None"; TYPE STRING; LENGTH 2; } ENTERPR { TYPE NUMBER; LENGTH 6; REFYEAR { LENGTH 4; WEIGHT { TYPE DOUBLE; LENGTH 20.10; NACE_SP { LENGTH 5;

25 Program CVTS annex8 PROGRAM cvts_4 { INPUT cvts_4 inputDataSet; <= all input datasets we use for the validation INPUT LANGUAGES_LIST LANGUAGES; INPUT COUNTRIES_LIST COUNTRIES; INPUT NUTS_LIST NUTS; INPUT NACE_LIST NACE; STEPS { <= can be multi-step program (for example separately ERRORS .. WARNINGS ) VALIDATION annex8_error { INPUT inputDataSet; <= main dataset being validated LOOKUP LANGUAGES; LOOKUP COUNTRIES; <= lookup tables LOOKUP NUTS; LOOKUP NACE; ERROR err_annex8_error; <= output log - error dataset RULES { RECORD FL001 { CONDITION inLookup (COUNTRY, COUNTRIES, "CODE"); <= check validity of the COUNTRY code using lookup table ERRMSG "Rule FL1 failed for field [COUNTRY]: See EU Manual for valid list of codes (annex 12)" SEVERITY "Error" (COUNTRY) ; } RECORD FL002 { CONDITION (ENTERPR>=0 AND ENTERPR<=999996); ERRMSG "Rule FL2 failed for field [ENTERPR]: In the range 0 to " SEVERITY "Error" (ENTERPR) ; RECORD FL004 { CONDITION (strToDouble (NACE_SP)>=2001 AND strToDouble (NACE_SP)<=2020); ERRMSG "Rule FL4 failed for field [NACE_SP]:In the range 2001 to See Manual (annex 1)" SEVERITY "Error" (NACE_SP) ; RECORD FL005 { CONDITION in (SIZE_SP, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); ERRMSG "Rule FL5 failed for field [SIZE_SP]: In the range 0 to 9" SEVERITY "Error" (SIZE_SP) ; RECORD FL171 { CONDITION (NOT isNull (A1bis)) -> inLookup (A1bis, NACE, "CODE"); ERRMSG "Rule FL171 failed for field [A1bis]: NACE rev 1.1" SEVERITY "Warning" (A1bis) ; RECORD FL172 { CONDITION (NOT isNull (A2bis)) -> ( (A2bis >=0 and A2bis <= ) or A2bis = ); ERRMSG "Rule FL172 failed for field [A2bis]: In the range of or " SEVERITY "Warning" (A2bis) ;

26 Complex program example (1)
PROGRAM ComputationExamples { INPUT countryDsd inputData; STEPS { VALIDATION checkValues { INPUT inputData; ERROR errorData1; RULES { RECORD pureRecord { PRICE := 20; } RECORD conditionalRecord { CONDITION isNull(VALUE); THEN { VALUE := PRICE * QUANTITY; ELSE { PRICE := VALUE / 5; QUANTITY := VALUE / PRICE; VERTICAL pureVertical { EXPRESSION { KEYS COUNTRY, CTYPE, MONTH, PRODUCT; TRKEYS COUNTRY; VALUE['TOTAL'] := nvl(VALUE['TOTAL'],0);

27 Complex program example (2)
VERTICAL conditionalVertical { EXPRESSION { KEYS COUNTRY, CTYPE, MONTH, PRODUCT; TRKEYS COUNTRY; CONDITION 2 * VALUE['TOTAL'] = sum(VALUE[*]); THEN { VALUE['FR'] := VALUE['TOTAL'] / 3; VALUE['GB'] := VALUE['TOTAL'] / 2; VALUE['TOTAL'] := sum(VALUE[*]) - VALUE['TOTAL']; } ELSE { VERTICAL multipleTranspositionsComputation { TRKEYS COUNTRY, PRODUCT; VALUE['TOTAL']['GAS'] := nvl(VALUE['TOTAL']['GAS'],0);

28 Complex program example (3)
VERTICAL multipleTranspositionsCondition { EXPRESSION { KEYS COUNTRY, CTYPE, MONTH, PRODUCT; TRKEYS COUNTRY, PRODUCT; CONDITION VALUE['TOTAL']['GAS'] > 5000; THEN { VALUE['TOTAL']['GAS'] := VALUE['TOTAL']['OIL'] * 2; VALUE['TOTAL']['GLD'] := VALUE['TOTAL']['OIL'] * 5; } ELSE { VALUE['TOTAL']['GLD'] := VALUE['TOTAL']['GAS'] ; DATAOPERATION sortData { SORT { INPUT inputData; ORDER MONTH ASC, CTYPE ASC, COUNTRY ASC, PRODUCT ASC;

29 Accepted data formats CSV (with or without header) /SBS, CVTS,TOURISM
Gesmes / BOP ITS, BOP FDI UNA:+.? ' UNB+UNOC:3+FR2+4D :1637+IREF GESMES/TS' UNH+MREF GESMES:2:1:E6' BGM+74' NAD+Z02+ECB' NAD+MR+4D0' NAD+MS+FR2' IDE+10+EUROSTAT_BOP_01 reporting' DSI+BOP_FDI_A' STS+3+7' DTM+242: :203' DTM+Z02: :702' IDE+5+EUROSTAT_BOP_01' GIS+AR3' GIS+1:::-' ARR++A:FR:N:2:330:N:4A:E:9999:9999: :702:0:A:F+0:A:F+0:A:F‘ <= multi-year 2007, 2008, 2009 observations ARR++A:FR:N:2:330:N:4F:E:9999:9999: :702:0:A:F+0:A:F+0:A:F' ARR++A:FR:N:2:330:N:7Z:E:9999:9999: :702:0:A:F+0:A:F+0:A:F' ARR++A:FR:N:2:330:N:A1:E:1100:9999: :702:5824:A:F+5930:A:F+4204:A:F' ARR++A:FR:N:2:330:N:A1:E:1495:9999: :702:5828:A:F+5932:A:F+4206:A:F' CSV (with or without header) /SBS, CVTS,TOURISM 9H; 2008; LT; 2; B-N_X_K642; 11930; 16236; ; ; ; ; UNIT; ; ; ; ; ; TT0; ; ; ; ; D08 9H; 2008; LT; 3; B-N_X_K642; 11930; 1001; ; ; ; ; UNIT; ; ; ; ; ; TT; ; ; ; ; D08 9H; 2008; LT; 4; B-N_X_K642; 11930; 529; ; ; ; ; UNIT; ; ; ; ; ; TT; ; ; ; ; D08 9H; 2008; LT; 30; B-N_X_K642; 11930; 17766; ; ; ; ; UNIT; ; ; ; ; ; TT; ; ; ; ; D08 9H; 2008; LT; 2; B-E; 11930; 1138; ; ; ; ; UNIT; ; ; ; ; ; TT; ; ; ; ; D08 9H; 2008; LT; 3; B-E; 11930; 104; ; ; ; ; UNIT; ; ; ; ; ; TT; ; ; ; ; D08 9H; 2008; LT; 4; B-E; 11930; 61; ; ; ; ; UNIT; ; ; ; ; ; TT; ; ; ; ; D08 FLR example 001E 001E 001E 001E FLR example 2 E ZZZZZ E ZZZZZ

30 Program with parameter(s)
PROGRAM SBS_ANNEX1_SingleSeries { INPUT SBS_DATA input1; PARAMETER P_T NUMBER; PARAMETERSET PARAMETERS { P_T = 2009; } STEPS { VALIDATION Validation { INPUT input1; ERROR ErrorLog; RULES { VERTICAL Rule001 { EXPRESSION { KEYS SERIES, YEAR, TER_UNIT, SIZECLASS, ECO_ACTIVITY, VARIABLE; TRKEYS VARIABLE; CONDITION SERIES = '1A' AND YEAR = p_T AND countMissing(aux_val['12150'],aux_val['12110'])=0 -> aux_val['12150'] <= aux_val['12110']; ERRMSG '12150 > 12110' SEVERITY 'Warning' (aux_val['12150'],aux_val['12110']) ;

31 Functions, data types, operators (1)
There are four types of data: Boolean Double Number String Operators There are three types of operators in the SL Expressions: Boolean operators, used to evaluate expressions into a true/false result: OR AND NOT -> (implication) = (equals) <> (not equals) > (greater than) < (lower than) >= (greater than or equal to) <= (lower than or equal to) Computation operators, used to produce a value result following evaluation: + (plus) – (minus) * (multiply) / (divide) Assignment operator, used to assign a value to an operand := (supports assignment to NULL, value := NULL) Functions These following function calls are supported: A abs(Double) – absolute value ascii(Char) – returns the ASCII code for a character B between(Double, Double, Double) – verifies if a number is inside a closed interval between(Double, Double, Double, Boolean, Boolean) – verifies if a number is inside an interval allowing the user to specify if the interval is closed or open at each end between(String, String, String) – same as above between(String, String, String, Boolean, Boolean) – same as above C ceiling(Double) – ceiling for number (Ex: ceiling(3.2) => 4) chr(Integer) – returns the ASCII character for the ASCII code concatenate(String…) – concatenate Strings countMissing(List) – returns the number of null values in the list count(List) – returns the number of elements in the list E exp(Double) F firstIndexOf(String toSearch, String searchIn, Double startingFrom) – first occurance of the toSearch String in the searchIn String floor(Double) – floor for number (Ex: ceiling(3.2) => 3) G getRowCount(datasetReference) – returns the number of rows for the specified dataset reference

32 Functions, data types, operators (2)
in(Boolean, Boolean List) – check to see if a value is inside a list in(Double, Double List) in(String, String List) identicalInList(List) – checks that all elements in a list are identical isIdentical(List, List, …) – returns a boolean indicating if each list contains identical elements (elements are identical inside a single list) – Ex: isIdentical(price[*],quantity[*],value[*]) isUnique(List, List, …) – returns a boolean indicating if the combination of elements from each list for all the index positions are unique– Ex: isUnique(price[*],quantity[*],value[*]) isTrue(Boolean) – checks if a boolean is true isNull(Boolean/String/Double) – checks if a value is NULL inLookup(value1, value2, …, datasetReference, “fieldName1”, “fieldName2”,… ) – returns a boolean indicating whether or not the value or combination of values is defined for the fieldname or combination of fieldnames in the specified dataset L lastIndexOf(String toSearch, String searchIn, Double startingFrom) – last occurance of the toSearch String in the searchIn String length(String) – returns the length of the String like(String, String) – compares two strings in a SQL manner log(Double) ln(Double) ltrim(String) – trim left side of String lower(String) – switch to lower case left(String S, Double N) – returns the first N characters from S M max(Double List) – maximum value from a list min(Double List) – minimum value from a list mean(Double List) – computes the average value not counting null values missingMean(Double List) – computes the average value counting null values as zero mod(Double N, Double n) – N%n N nvl(Boolean, Boolean) – if first argument value is null return second argument nvl(Double, Double) nvl(String, String) O occurs(String S, String s) – returns the number of occurences of s in S P printf(String, String/Double…) – offers the capabilities of the printf method pow(Double N, Double n) – N**n R right(String S, Double N) – returns the last N characters from S round(Double N, Double n) – round N till n decimals (Ex: round(4.46, 1) => 4.5) rtrim(String) – trim right side of String S str(Double N1, Double N2, Double N3) – Ex: str(30.25, 7, 3)= “_BLANK_30.250“ strToDouble(String) – convert a String into a Double – return null if String cannot be converted substring(String, Double N, Double n) – substring starting from N, counting n characters sum(Double List) – sum of elements from list sqrt(Double) – returns the square root of the value T trim(String) – trim String transcode (“targetField”, lookupReference, “lookupField”, lookupValue) – performs a lookup based on the specified field and value and returns the value of the target field on the matching row U upper(String) – switch to upper case uniqueInList(List) – checks if a list contains unique values

33 2013 functionalities Scalability improvements Gesmes full integration
Internationalisation and interface improvements

34 THANK YOU FOR YOUR ATTENTION
EDIT? Hmm


Download ppt "Eurostat EDIT 2012 Functional Presentation."

Similar presentations


Ads by Google