Presentation is loading. Please wait.

Presentation is loading. Please wait.

Atomic Structure.

Similar presentations


Presentation on theme: "Atomic Structure."— Presentation transcript:

1 Atomic Structure

2 Quantization Due to confinement, like acoustic waves on a string
Same for H-atom Vacuum -0.85 eV -1.51 eV U(r) = -Zq2/4pe0r -3.4 eV -13.6 eV

3 Particle in a Box Results agree with analytical results E ~ n2
Finite wall heights, so waves seep out

4 Generalizing to 3D

5 Recap 2D m Functions Angular nodes promote orthogonality along Q l
Q(j) = exp(imj) Sinusoids m R(r) = Jn(xmnr/a) Bessel Functions Angular nodes promote orthogonality along Q l

6 How about 3D? q f R ^ 3 quantum #s n for radial R l for longitude q
m for latitude f R q f ^

7 Hydrogen Atom F = Rnl(r)/r x Ylm(q,j) For given n, l = 0, 1, 2, …, n-1
(called s, p, d, f, …) m = -l, -(l-1), -(l-2), … ,l-2, l-1, l (px, py, pz, dxy, dyz, dxz… “Orbitals”) 2l+1 of multiplets

8 Hydrogen Atom (Variable separation in radial coords)
-(ħ22/2m)F = -ħ2/2m[1/r.∂2(rF)/∂r2] + +1/2mr2[-ħ2{1/sinq.∂/∂q(sinq∂F/∂q) + 1/sin2q.∂2F/∂j2}] L2 ˆ p2/2m  L2/2I

9 Angular Momentum eigenstates
Lz  Lz ˆ L2  L2 ˆ z-component Quantized m = -l, -(l-1),... (l-1), l Angular Mom Quantized l(l+1)ħ2 l = 0, 1, 2,.. (n-1) Also, Lx, Ly, Lz are not simultaneously measurable

10 Angular space (Orbitals)
Check  they satisfy L2Ylm = l(l+1)ħ2Ylm Y00(q,j) Indep. of angle (l=0) L2 = -ħ2[1/sinq.∂/∂q(sinq.∂/dq)+ 1/sin2q.∂2/∂j2] Lz = -iħ∂/∂j

11 Angular space (Orbitals)
Check  they satisfy L2Ylm = l(l+1)ħ2Ylm E.g. L2cosq = 2ħ2cosq 1st order polynomials L2 = -ħ2[1/sinq.∂/∂q(sinq.∂/dq)+ 1/sin2q.∂2/∂j2] Lz = -iħ∂/∂j l = 1 (“p” Orbitals), m=-1, 0, 1 Px = sinqcosj Y11(q,j) + Y1,-1(q,j) Py = sinqsinj Y11(q,j) - Y1,-1(q,j) Pz = cosq Y10(q,j)

12 d orbitals (l = 2) dx2-y2 = cos2jsin2q Y22(q,j) + Y2,-2(q,j)
dxy = sin2jsin2q Y22(q,j) - Y2,-2(q,j) dxz = cosjsin2q Y21(q,j) + Y2,-1(q,j) x y z x y z x y z dyz = sinjsin2q Y21(q,j) - Y2,-1(q,j) d3z2-r2 = 3cos2q-1 Y20(q,j) x y z x y z 2nd order polynomials

13 What about radial part? i.e, we use F = R(r)Ylm(q,j)/r Then
Centrifugal Barrier Uc i.e, we use F = R(r)Ylm(q,j)/r Then -ħ2/2m.d2R/dr2 + [U(r)+l(l+1)ħ2/2mr2]R = ER Ueff(r) Ueff U Uc r

14 Why is this centrifugal?
L = mvr (constant) Fc = mv2/r = L2/mr3 Uc = -∫Fdr = L2/2mr2 L2  L2  l(l+1)ħ2 Ueff(r) = –Zq2/4pe0r + l(l+1)ħ2/2mr2

15 What about R/r? i.e, we use F = R(r)Ylm(q,j)/r Then
-ħ2/2m.d2R/dr2 + [U(r)+l(l+1)ħ2/2mr2]R = ER Looks like 1D. Then why R/r? Normalization over r2dr ∫(R/r)2.r2dr = 1  ∫R2.dr = 1

16 Hydrogen Atom -ħ2/2m.d2R/dr2 + [U(r)+l(l+1)ħ2/2mr2]R = ER
Centrifugal Barrier Uc -ħ2/2m.d2R/dr2 + [U(r)+l(l+1)ħ2/2mr2]R = ER Effective 1-D problem with centrifugal barrier (we know how to solve this numerically with Finite difference!) Ueff(r) Ueff U Uc r

17 Hydrogen Atom [-(ħ2d2/dr2)/2m + Ueff(r)]R = 0
Ueff(r) = –Zq2/4pe0r + l(l+1)ħ2/2mr2 l = 0, 1, 2, ... Ueff U Uc r

18 Numerical Solution y yn-1 yn yn+1 xn-1 xn xn+1 Hy = y = -t 2t+U1 -t

19 Matlab code t=1; Nx=101;x=linspace(-5,5,Nx);
q=1.609e-19;e0=4.805e-12;hbar=1.053e-34; m=9.1e-31; l=0; %U=[-q./(4*pi*e0*x) + l*(l+1)*hbar^2/(2*m*x.^2*q)];% Coulomb + centrifugal %Write matrices T=2*t*eye(Nx)-t*diag(ones(1,Nx-1),1)-t*diag(ones(1,Nx-1),-1); %Kinetic Energy U=diag(U); %Potential Energy H=T+U; [V,D]=eig(H); [D,ind]=sort(real(diag(D))); V=V(:,ind); % Plot for k=1:5 plot(x,V(:,k)+10*D(k),'r','linewidth',3) hold on grid on end plot(x,U,'k','linewidth',3); % Zoom if needed axis([ ])

20 Hydrogen Atom What do finite difference 1D radial solutions look like?
Depends on l F = Rnl(r)/r x Ylm(q,j) R(r)/r P orbitals (l=1) Particle stays away from nucleus (n-2) nodes 2p eV 3p eV 4p eV D orbitals (l=2) n-3 nodes 3d eV 4d eV S orbitals (l=0) Particle falls in (No centrif. barrier) n-1 nodes 1s eV 2s eV 3s eV Angular orthogonality between s, p, d due to angular nodes in Ylm Radial orthogonality within s, p, d set due to (n-l-1) radial nodes in R

21 Hydrogen Atom F = Rnl(r)/r x Ylm(q,j) R(r)/r
Rnl/r ~ rl.e-Zr/na0.L (r/a0) n-1 l-1 n gives ‘size’, l gives ‘angular momentum’, m gives z component

22 Hydrogen Atom Rnl/r ~ rl.e-Zr/na0.L (r/a0) R(r)/r
Size of atom given by peak of R(r) envelope r* = nla0/Z

23

24 So how did Bohr fare? 1. Allowed levels don’t radiate
They are eigenstates, so fixed energy 2. mvr = nħ LzYlm (q,j) = mħYlm(q,j) 3. mv2/r = Zq2/4pe0r2 Ueff(r) = –Zq2/4pe0r + L2/2mr2 ∂Ueff/∂r = 0

25 Hydrogen Energy Levels
Numerical results 1s eV 2s, 2p eV 3s, 3p, 3d eV Bohr’s results En = (Z2/n2)E0 E0 = -mq4/8ħ2e0 = eV E1 = -3.4 eV E2 = eV (Grid issues – fine, but enough # points) Accidentally, energy of 2s, 2p same Similarly for 3s, 3p, 3d (ie, E independent of l, dep. only on n) True only for Hydrogen !

26 Radial Solution for Coulomb electron
[-(ħ2d2/dr2)/2m + Ueff(r)]f = Ef Ueff(r) = –Zq2/4pe0r + l(l+1)ħ2/2mr2 fnl ~ rl+1e-Zr/na0f(r/a0) Try f(r) = Spcprp cp/cp-1 = [(2p+2l)/l-1/a0]/p(p+2l+1) For series to be finite, need (2p+2l)/l-1/a0 = 0 E = -ħ2/2ml2 = -(ħ2/2ma02) x 1/(2p+2l)2 = -4E0/4(p+l)2 = -E0/n2 = E0/(n-1/2)2 Twice the energy of 3D Hydrogen !!

27 For most atoms Notice energy depends not just on n, but on n+l
So 4s has lower energy than 3d (“n+l” rule)

28


Download ppt "Atomic Structure."

Similar presentations


Ads by Google