Download presentation
Presentation is loading. Please wait.
Published byJack Snow Modified over 6 years ago
1
Nuclear masses of neutron-rich nuclei and symmetry energy
Ning Wang Guangxi Normal University, Guilin, China International Conference on NUCLEAR STRUCTURE AND RELATED TOPICS (NSRT18) Burgas, June 3-9, 2018
2
Outline Introduction Weizsäcker-Skyrme mass model
Tests and model uncertainties Influence of symmetry energy coefficients Summary and discussions
3
Neutrons ~ 3000 measured masses ~ 4000 unknown masses
SHE Esym fission astrophysics … Neutrons rms error of 200 keV ~ 1000 keV
4
Yu. Oganessian. SKLTP/CAS - BLTP/JINR July 16, 2014, Dubna
Super-heavy island or shoal? neutrons → N. Wang, Z. Liang, M. Liu, X. Wu, Phys. Rev. C 82 (2010) Courtesy of Qiu-Hong Mo Yu. Oganessian. SKLTP/CAS - BLTP/JINR July 16, 2014, Dubna Does the SH island exist? Where is the center?
5
Discrepancies increase evidently approaching neutron drip line
What is the reason? Y.-H. Zhang, Yu. A. Litvinov, T. Uesaka and H.-S. Xu N=82 Z=82
6
Parabolic law for drip line nuclei?
Symmetry energy coefficients Normal Accelerating Decelerative Parabolic law for drip line nuclei? From Wikipedia
7
Weizsäcker-Skyrme mass model
Liquid drop Deformation Shell Residual Residual:Mirror 、pairing 、Wigner corrections... Macro-micro concept & Skyrme energy density functional N. Wang, M. Liu, et al., PRC ;PRC ;PRC
8
Potential energy surface
Liquid drop part with shell corrections 110Pd
9
Isospin dependence of model parameters
Symmetry energy coefficient Symmetry potential Strength of spin-orbit potential symmetry potential
10
4. Surface diffuseness of the WS potential
Neutron-rich N. Wang, M. Liu, X. Z. Wu, and J. Meng, Phys. Lett. B 734 (2014) 215
11
Mirror Constraint Isospin symmetry reduces rms error by ~10%
12
Wigner effect of heavy nuclei
Isospin symmetry of valence nucleons (N,Z) N=Z K. Mazurek, J. Dudek,et al., J. Phys. Conf. Seri. 205 (2010)
13
Magicity from shell corrections
Black squares denote spherical nuclei WS4 N. Wang, M. Liu, X. Z. Wu and J. Meng, Phys. Rev. C 93, (2016)
14
Tests and model uncertainties
15
4 years later, with more data
LSD model …
16
alpha-decay energies of SHN
To the data of 121 nuclei with Z>100 Y. Z. Wang, et al., Phys. Rev. C92,064301(2015)
17
Predictive power for extremely unstable nuclei
keV WS* FRDM DZ28 Year 2010 1995 AME2003 441 656 360 270 new data in AME2016 589 901 763 N. Wang and M. Liu, J. Phys: Conf. Seri. 420 (2013) RBF correction
18
Statistical errors based on variation of fit data (WS*)
Maximum likelihood estimation Considering the weak correlations between parameters of macro part and those of micro part M. Liu, et al., Chin. Phys. C 41 (2017)
20
Influence of symmetry energy coefficients
Most sensitive parameter Neutron drip line
21
Matching macro-micro model and Skyrme EDF
22
Symmetry energy coefficients of finite nuclei from Skryme energy density functional + ETF2
Second-order Fourth-order N. Wang, M. Liu, H. Jiang, J. L. Tian, Y. M. Zhao, Phys. Rev. C 91(2015)
23
Nbound H. Jiang, N. Wang, et al., PRC 91 (2015)
24
4th-order symmetry energy coefficient
After removing Coulomb term, Wigner term & asym WS4 HFB17 N. Wang, M. Liu, H. Jiang, J. L. Tian, Y. M. Zhao, Phys. Rev. C 91(2015)
25
Summary and discussions
We proposed a macro-micro mass model with an rms error of 298 keV. Isospin dependence of model parameters and isospin symmetry improve the accuracy of the WS mass model. For super-heavy nuclei and neutron drip line nuclei, the statistical errors increase evidently. The symmetry energy term plays a key role to the mass predictions of nuclei approaching to neutron drip line. Through matching the Liquid-drop energy and the Skyrme energy density functional, we obtain the slope parameter L ~ 52 MeV (WS*). The large discrepancy between WS4 and HFB17 for the masses of neutron drip line nuclei could be due to the uncertainty of 4th-order symmetry energy coefficient.
26
Thank you for your attention
Nuclear mass tables & Codes : Zhu-Xia Li (CIAE, Beijing) Xi-Zhen Wu (CIAE, Beijing) Ying-Xun Zhang (CIAE, Beijing) Kai Zhao (CIAE, Beijing) Min Liu (GXNU, Guilin) Jie Meng (Peking U, Beijing) Hui Jiang (SHMTU, Shanghai) Lu Guo (UCAS, Beijing) Yu-Min Zhao (SJTU, Shanghai) Li Ou (GXNU, Guilin) Jun-Long Tian (AYNU, Anyang) Zhi-Gang Xiao (Tsinghua U., Beijing) Shan-Gui Zhou (ITP-CAS, Beijing)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.