Presentation is loading. Please wait.

Presentation is loading. Please wait.

Professor Ronald L. Carter

Similar presentations


Presentation on theme: "Professor Ronald L. Carter"— Presentation transcript:

1 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/
Semiconductor Device Modeling and Characterization EE5342, Lecture 20 Spring 2003 Professor Ronald L. Carter L20 27Mar03

2 Gummel-Poon Static npn Circuit Model
Intrinsic Transistor RC B RBB ILC IBR ICC - IEC = {IS/QB}* {exp(vBE/NFVt)-exp(vBC/NRVt)} B’ ILE IBF RE E L20 27Mar03

3 Gummel Poon npn Model Equations
IBF = IS expf(vBE/NFVt)/BF ILE = ISE expf(vBE/NEVt) IBR = IS expf(vBC/NRVt)/BR ILC = ISC expf(vBC/NCVt) ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB QB = { + [ + (BF IBF/IKF + BR IBR/IKR)]1/2 }  (1 - vBC/VAF - vBE/VAR )-1 L20 27Mar03

4 BJT Characterization Reverse Gummel
vBEx= 0 = vBE + iBRB - iERE vBCx = vBC +iBRB +(iB+iE)RC iB = IBR + ILC = (IS/BR)expf(vBC/NRVt) + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt) (1-vBC/VAF-vBE/VAR ) {IKR terms }-1 iE RC iB RE RB vBCx vBC vBE + - L20 27Mar03

5 Sample rg data for parameter extraction
IS=10f Nr=1 Br=2 Isc=10p Nc=2 Ikr=.1m Vaf=100 Rc=5 Rb=100 iB data iE data iE, iB vs. vBCext L20 27Mar03

6 Definitions of Neff and ISeff
In a region where iC or iB is approxi-mately a single exponential term, then iE or iB ~ ISeffexp (vBCext /(NReffVt) where Neff = {dvBCext/d[ln(i)]}/Vt, and ISeff = exp[ln(i) - vBCext/(NeffVt)] L20 27Mar03

7 Reverse Gummel Data Sensitivities
c Region a - IKRIS, RB, RC, NR, VAF Region b - IS, NR, VAF, RB, RC Region c - IS/BR, NR, RB, RC Region d - IS/BR, NR Region e - ISC, NC vBCx = 0 a d e iB b iE iE(A),iB(A) vs. vBC(V) L20 27Mar03

8 Region (d) rg Data Sensitivities
Region d - BR, IS, NR iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt) L20 27Mar03

9 Simple extraction of BR from data
Data set used Br = 2 Extraction gives max iE/iB = 1.7 for 0.48 V < vBC < 0.55V 1.13A < iE < 14.4A Minimum value of Neff =1 for same range iE/iB vs. iE L20 27Mar03

10 Region (b) rg Data Sensitivities
Region b - IS, NR, VAF, RB, RC iE = bRIBR/QB = ISexp(vBC/NRVt) (1-vBC/VAF-vBE/VAR ){IKR terms }-1 L20 27Mar03

11 Region (e) rg Data Sensitivities
Region e - ISC, NC iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt) L20 27Mar03

12 Simple extraction of IS, ISC from data
Data set used IS = 10fA ISC = 10pA Min ISeff for iE data = 9.96E-15 for vBC = 0.200 Max ISeff value for iB data is 8.44E-12 for vBC = 0.200 iB data iE data ISeff vs. vBCext L20 27Mar03

13 Simple extraction of NR, NC from rg data
Data set used Nr = 1 Nc = 2 Flat Neff region from iE data = 1.00 for < vBC < 0.375 Max Neff value from iB data is for < vBC < 0.205 iB data iE data NEeff vs. vBCext L20 27Mar03

14 Region (c) rg Data Sensitivities
Region c - BR, IS, NR, RB, RC iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt) L20 27Mar03

15 Region (a) rg Data Sensitivities
Region a - IKRIS, RB, RC, NR, VAF iE=bRIBR/QB~[ISIKR]1/2exp(vBC/2NRVt) (1-vBC/VAF-vBE/VAR ) L20 27Mar03

16 RE-flyback data extraction of RE
RE  vCE/iB (from IC-CAP Modeling Reference, p. 6-37) RBM  (vBE - vCE)/iB (adapted by RLC from IC-CAP Modeling Reference, p. 6-39) o.c. Qintr vCE RBB B’ vBE E’ iB RE L20 27Mar03

17 Extraction of RE from refly data
RE  vCE/iB Slope gives RE  7.1 Ohm Model data assumed RE = 1 Ohm L20 27Mar03

18 Extraction of RBM from refly data
RBM  (vBE - vCE)/iB Slope gives RBM  108 Ohm Model data assumed RB = RBM = 100 Ohm L20 27Mar03


Download ppt "Professor Ronald L. Carter"

Similar presentations


Ads by Google