Presentation is loading. Please wait.

Presentation is loading. Please wait.

Why is circumstellar interaction of SNe important?

Similar presentations


Presentation on theme: "Why is circumstellar interaction of SNe important?"— Presentation transcript:

1 Why is circumstellar interaction of SNe important?
Progenitors: Mass loss determines SN Type. Type IIP (little mass lost), ....IIn, IIb ( < 0.5 M of H envelope), Ib (only He core), Ic (only O core) Ejecta structure: Shock dynamics probes density structure of SN ejecta Shock physics: Thermal radiation processes (X-rays) Non-thermal radiation processes (radio) Relativistic particle acceleration Dust production SN – GRB connection: GRB afterglow determined by circumstellar environment of the SN.

2 Mass loss processes I. Single stars Blue SGs u ~ 500 – 3000 km/s
dM/dt 10-7 – 10-5 MO /yr Red SGs u ~ 10 – 50 km/s dM/dt 10-6 – 10-4 MO /yr Superwinds (cf. AGB's): Heger et al (1997) find large amplitude pulsations with several MO per 10,000 years dM/dt ~ 10-4 MO/yr II Binaries Winds RL overflow, common envelope phases....

3 Best studied CS case: SN 1993J
in M 81 3.6 Mpc

4 Evidence for CS interaction
Radio: Synchrotron spectrum Wavelength dependent turn-on of emission All types of core collapse SNe observed SN 1993J IIb SN 1979C IIL 21 cm 1.3 cm 1.3 cm 21 cm Van Dyk et al 1994, Weiler, Panagia, Sramek 2002 Montes et al 2000

5 All types of core collapse SNe detected (IIP, IIL, IIn, Ib, Ic).
Sramek (2002) All types of core collapse SNe detected (IIP, IIL, IIn, Ib, Ic). No Type Ia SNe!

6 SN 1993J VLBI Bartel et al Marcaide et al. 17 May 1993 3 Jun 1998

7 Transition from Type II to Type Ib
Optical Type IIb Filippenko et al 1994 Fransson et al 2004 Transition from Type II to Type Ib Box-like line profiles  narrow emitting shell

8 Type IIn SNe Narrow lines from dense CSM. Strong CS interaction.

9 SN 1993J ROSAT PSPC Zimmermann et al

10 Ejecta structure SN 1987A Power law for V > km/s   V V-12

11 Chevalier (1982) Chevalier & CF (1994)

12 Shock structure Fransson et al 1996 Chevalier & Blondin 1995

13 Line profiles Broad line SNe: IIL, Ib Narrow line SNe: IIn
(Filippenko 1997) Broad line SNe: IIL, Ib Narrow line SNe: IIn

14 Two cases for the line widths
ej >> CSM Type IIL, IIb SN 1993J, SN 1979C Steady wind Line width ~ Vej 2.ej << CSM Type IIn… SN 1995N, SN 1998S Blobs, rings, short-lived superwinds… SN 1987A Line width ~ Vblast << Vej

15 SN 1993J X-rays ROSAT keV (Zimmermann et al 1994, Immler et al 2002) ASCA 1 – 10 keV (Uno et al 2002) COMPTON-GRO/OSSE 50 – 200 keV (Leising et al 1994) Chandra (Swartz et al 2002) XMM/Newton (Zimmermann & Aschenbach 2003)) t < 50 days kT ~ 100 keV Lx  5x1040 erg/s keV 2x1039 erg/s keV t > 200 days kT ~ 1 keV Lx  1x1039 erg/s keV Transition from hard to soft spectrum! Temperature (keV) Day after explosion Zimmermann & Aschenbach 2003

16 X-ray evolution CF, Lundqvist & Chevalier 1996 At 10 days: Only X-rays from outer, CS shock T~109 K At 200 days: X-rays from reverse shock dominates T~107 K Hard to soft evolution natural consequence of the cool shell

17 X-ray spectra useful probes of the
ejecta composition solar helium zone Nymark et al 2006 carbon zone oxygen zone

18 SN 1993J CNO enriched H or He envelope Nymark, Chandra, CF 2007
data: XMM Zimmermann & Aschenbach Chandra: Swartz et al 2003 CNO enriched H or He envelope

19 UV & optical line emission
Cool shell, reverse shock SN ejecta partially ionized, T<7000K fully ionized  neutral, T ~ (1-3)x104 K H, Mg II, Fe II O III-IV, N III-V, Ne III-V

20 SN 1993J Good fit with ejecta + cool, dense shell
HST (SINS) + Keck Mg II He I H [O III] Good fit with ejecta + cool, dense shell Shock at ~ 10,000 km/s Consistency of X-ray flux and UV/optical flux

21 Radio light curves SN 1979C IIL SN 1993J IIb 21 cm 1.3 cm
Montes et al 2000 21 cm 1.3 cm Van Dyk et al 1994, Weiler, Panagia, Sramek 2002 SN 1993J IIb

22 Free-free absorption by the CSM
RADIO Free-free absorption by the CSM Twind ~ 105 K (Lundqvist & CF 1989) Good fit to Type IIL SNe (SN 1979C, 1980K…..) Reliable mass loss rates need calculation of Twind

23 Synchrotron self-absorption

24 SN 1993J Fransson & Björnsson 1998 SSA + free-free SSA only

25 Magnetic field and particle density in SN 1993J
1. Wind B-field 1-2 mG at 1016 cm (Cohen et al 1987) Amplification of B-field behind shock. Turbulence? (Jun & Norman 1996) 2. UB/Utherm  0.15 3. Urel  Utherm

26 Model and SN 1993J VLA light curves
Assume: UB  Utherm, Urel  Utherm Self-consistent calculation of rel. electron spectrum, including all cooling processes, as well as radiative transfer CF & Björnsson 1998 Obs: VLA: van Dyk et al 1994, Weiler, Panagia, Sramek 2002 csm  r-2 OK!! No evidence for mass loss variations or s  2. 2. dM/dt = 5x10-5 MO/yr for u=10 km/s, same as from X-rays 3. Injection spectrum nrel  -2.1. Synchrotron cooling steepens this!

27 Free-free vs synchrotron self-absorption
Chevalier 1998 FF SSA

28 VLBI and H velocity evolution require a
VLBI and H velocity for different ejecta models Red = H Black = VLBI/1.3 VLBI and H velocity evolution require a steep density gradient at ~ 13,000 km/s

29 Mass loss rates Type IIP's dM/dt 10-6 MO yr-1 (for u = 10 km s-1). RSG wind OK Type IIL's dM/dt  2x10-5 – few x 10-4 MO yr-1 (for u = 10 km s-1). 'super wind' (Heger et al) t = Vs/u tobs  5x102 tobs > 104 / (u/10 km s-1) yrs i.e., several MO lost Type IIn's dM/dt  MO yr-1 (for u = 10 km s-1). super wind Clumping (Chugai)? Asymmetric wind (Blondin, Chevalier, Lundqvist)? Type Ib/c's dM/dt  MO yr-1 (for u = 1000 km s-1). WR stars? Mass loss rate uncertain

30 CNO burning SN 1979C (IIL), 1987A (IIP), 1993J (IIb), 1995N (IIn), 1998S (IIn) all have N/C >> (Fransson et al 1989, 2001, 2004) SN 1998S HST (SINS) SN 1998S N/C ~ 6 SN 1995N N/C ~ 4 SN 1993J N/C ~ 12 SN 1987A N/C ~ 5 SN 1979C N/C ~ 8 Solar N/C ~ 0.25

31 N/C increases with mass loss
40 M at ZAMS N/C >> 1  CNO burning  heavy mass loss + mixing Meynet & Maeder 2003

32 N/C strong fcn of mass loss
40 M at ZAMS Meynet & Maeder 2003 N/C >> 1  CNO burning  heavy mass loss + mixing SN 1993J model Woosley et al 1994

33 N/C strong fcn of mass loss
N/C >> 1  CNO burning  heavy mass loss + mixing Meynet & Maeder 1992 SN 1993J model Woosley et al 1994

34 Conclusion of CNO: Progenitors must have lost
SN 1993J model Woosley et al 1994 Progenitors must have lost most of the hydrogen envelope before explosion Confirms mass loss as the important factor for the SN Type

35 SN 1987A ring collision SAINTS collab.

36

37 R ~ 1018 cm, Vexp ~10 km s-1 tdyn ~2x104 years N/C ~ 5
Origin of the rings R ~ 1018 cm, Vexp ~10 km s tdyn ~2x104 years N/C ~ 5 Origin (?): Merger inducing the equatorial mass loss and outer rings (Podziadlowski 1992, Heger & Langer 1998, Morris & Podziadlowski 2005) Can this happen in a Ic progenitor? Late SN2001em emission (Chugai & Chevalier 2006)

38 Chandra & ATCA Park et al Manchester et al

39 Dust emission Gemini S + Spitzer Spitzer 11.7  18.3  T ~ 166 K
Bouchet et al 2006 Spitzer 11.7   T ~ 166 K Si feature collisionally heated

40 VLT/UVES FWHM ~ 6 km s-1 Seeing 0.5-0.8” Resolves N/S
Gröningsson et al 2006

41 Narrow FWHM ~ 10 km s-1 from unshocked ring
Gröningsson et al 2006 H [O III] 5007 narrow broad He I Narrow FWHM ~ 10 km s-1 from unshocked ring Broad Vmax km s-1 from shocked ring (Pun et al 2002)

42 Reverse shock VLT/FORS Dec 2006 2002 2000 Gröningsson et al (2006)
Smith et al (2006), Heng et al (2006) VLT/FORS Dec 2006 2002 2000 Velocity (104 km/s) Broad ~16,000 km/s emission from reverse shock going back into ejecta

43 Intermediate velocity lines from shocked ring
protrusions Oct 2002 Gröningsson et al 2006 N part of ring ~ ‘Spot 1’. Peak velocity ~ 120 km s-1. Max extension ~ 300 km s-1

44 VLT/SINFONI March 2005 Adaptive optics integral field unit for J, H, K
He I 2.06  Adaptive optics integral field unit for J, H, K Kjaer et al 2007 J-band Expansion velocities along ring

45 Coronal lines VLT/UVES spectrum Max. velocity ~ shock velocity
Gröningsson et al 2006 VLT/UVES spectrum Max. velocity ~ shock velocity ~ km/s Fe XIV  5303  Ts ~ 2x106 K H, He I, N II, O I-III, Fe II, Ne III-V….. Cooling, photoionized gas behind radiative shock into ring protrusions

46 Hydrodynamics of ring collision
Optical emission from radiative shocks into the ring material Radio and hard X-rays from reverse shock Borkowski et al 1997 Pun et al 2002

47 Borkowski et al 1997

48 Radiative shock structure
Vs = 350 km/s no = 104 cm-3 shock photoion. broad H, [OIII],… photoion. precursor narrow Ha, [N II], [O III] coll. ioniz. X-rays Coronal lines Post-shock densities ~5x cm-3. Agrees with nebular diagnostics

49 Optical lines probe different temperature intervals in the
shock Te Fe Optical lines probe different temperature intervals in the cooling gas behind the radiative shocks

50 Coronal line diagnostics
Gröningsson, Nymark… Shock velocity Shock velocity into hot-spots 300 – 400 km s-1  Ts ~ 2x106 K Coronal lines complement the X-rays to probe whole temp. range

51 X-rays N VII, O VII-VIII, Ne IX-X, Mg XI-XII, Si XIII, Fe XVII…..
Chandra: Zhekov et al (2005, 2006) also XMM by Haberl et al N VII, O VII-VIII, Ne IX-X, Mg XI-XII, Si XIII, Fe XVII….. Two components: High density (104 cm-3) kT ~ 0.5 keV + Low density (102 cm-3) kT ~ 3.0 keV

52 Optical/UV from radiative shocks
Soft X-rays from radiative + adiabatic shocked ring blobs Hard X-rays and radio from adiabatic reverse shock A radiative shock gives X-rays, UV, optical, IR Expect correlation between optical/UV and soft X-rays, but not with hard and radio

53 Time evolution Optical: Gröningsson et al X-rays: Park et al 2005 Coronal lines and soft X-rays correlate. Soft X-rays from hot-spots. Hard from reverse shock & blast wave

54 Cooling shocks Line widths of low ionization ions increase with time
2000: ~ 250 km s-1 -> 2006: ~ 450 km s-1 . Coronal lines ~ constant ~ 450 km s-1

55 Cooling shocks yrs High velocity shocks seen in soft X-rays gradually become radiative Now, H up to ~ 450 km s-1  ne up to ~ 4x104 cm-3 ~ ring density (Lundqvist & CF 96) Expect this to continue to higher shock velocities

56 Narrow, unshocked lines
Unshocked ring ionized by SN shock breakout, then recombining Ring is now ionized by X-rays from shocks. Come-back of narrow lines Pre-ionized region ~ 5x1017 (n/104 cm-3 )-1 cm Shock models: Most of absorbed X-rays in pre-shock gas are re-emitted as [O III] We are now starting to see the re-ionization of the ring!

57


Download ppt "Why is circumstellar interaction of SNe important?"

Similar presentations


Ads by Google