Download presentation
Presentation is loading. Please wait.
Published byGautier Beausoleil Modified over 6 years ago
1
A Multi-Criterion Decision Making Approach to Problem Solving
M. HERMAN, Ir Royal Defense College (Brussels - Belgium) 11/20/2018
2
MCDM, Quality and Productivity
Actions : Alternative Strategies, Procedures for improvement Criteria : impact on Productivity (% process time adding value) Quality Customer satisfaction Timeliness of the production/service Accuracy of results Efficiency of the process (reduce rework) Cost-effectiveness 11/20/2018
3
MCDM, Quality and Productivity
Data : Assessment of Actions on Criteria Measurements : numerical data Ranking of qualitative assessments : ordinal data Problem : Rank or Select alternative strategies or procedures for improvement 11/20/2018
4
Some Typical MCDM Applications
Selection of high-tech industrial development zones A multi-attribute decision making approach for industrial prioritisation Selection of a thermal power plant location An approach to industrial locations 11/20/2018
5
Some MCDM Applications (cont.)
Selecting oil and gas wells for exploration Multi-attribute decision modelling for tactical and operations management planning in a batch processing environment New campus selection by an MCDM approach Selection of an automated inspection system Selection of an incident management procedure in a computer center 11/20/2018
6
Some MCDM Applications (cont.)
Acquisition of equipment (vehicles, helicopters, computers,...) Personnel selection and ranking Personnel assignment to jobs Ranking and selection of investment plans Ranking of loan requests by banks Burden sharing allocation in international organisations (EU, ASEAN,…) …... 11/20/2018
7
Early Literature (1) B. Roy, “Méthodologie multicritère d’aide à la décision”, Economica, Paris, 423 p, translated into English B. Roy and D. Bouyssou, “Aide multicritère à la Décision : Méthodes et Cas”, Economica, Paris, 700 p, 1993 11/20/2018
8
Early Literature (2) J.P. Brans, B. Maréschal and Ph. Vincke, “How to select and how to rank projects : the Prométhée Method”, EJOR (European Journal of O.R.), 24, pp , 1986 B. Maréschal and J.P. Brans, “Geometrical Representation for MCDM, the GAIA procedure”, EJOR (European Journal of O.R.), 34, pp , 1988 11/20/2018
9
Early Literature (3) M. Roubens, “Analyse et agrégation des préférences : modélisation, ajustement et résumé de données relationnelles”, Revue Belge Stat. Inf. O.R. (JORBEL) 20(2), pp , 1980 M. Roubens, “Preference Relations on Actions and Criteria in Multicriteria Decision Making”, EJOR 10, pp , 1982 11/20/2018
10
Early Literature (4) R. Van den Berghe and G. Van Velthoven, “Sélection multicritère en matière de rééquipement”, Revue X (Belgium), Vol. 4, pp. 1-8, 1982 H. Pastijn and J. Leysen, “Constructing an Outranking Relation with Oreste”, Mathematical Computation and Modelling, Vol. 12, No. 10/11, pp , 1989 11/20/2018
11
First approach to solve MCDM Problems
11/20/2018
12
Ranking of criteria 11/20/2018
13
Combining criteria 11/20/2018
14
Drawbacks of this method * The problem of assigning weights
* The problem of compensation 11/20/2018
15
11/20/2018
16
11/20/2018
17
Interactive compromises
* The problem of incomparability * The problem of indifference Interactive compromises 11/20/2018
18
Feature of MCDM Problems
Actions Quality Productivity a b c d Majority Principle a b d c a b d c a b d c 11/20/2018
19
MCDM methods for richer dominance relations
Aggregation by majority principles yields VERY POOR DOMINANCE RELATION: A lot of Incomparabilities (R) Some Indifferencies (I) and Preferences (P) MCDM methods should make the dominance relation richer (take into account more information than majority principles do) Less R (making decisions easier) More I and P 11/20/2018
20
Requirements for MCDM methods
Actions Criteria a P b a b Actions Criteria a R b a b 11/20/2018
21
Requirements for MCDM methods
Actions Criteria a P b a b Actions Criteria a I b a b 11/20/2018
22
Requirements for MCDM methods
Actions Criteria a I b a b Actions Criteria a I b a b 11/20/2018
23
Scaling Effect on the Average
Criteria Average a a P b b a a P b b a b P a b , 11/20/2018
24
Requirements for an MCDM Method
Deviations have to be considered Elimination of scale effects Pairwise comparison must lead to partial ranking (incomparabilities) or to complete ranking Methods must be transparant (“simple”) Technical parameters must have an interpretation by the decision maker Weights allocated to criteria must have a clear interpretation Conflict analysis of the criteria 11/20/2018
25
Some MCDM Methods Complete & Partial Ranking
Prométhée : numerical data Oreste : ordinal data Electre : Pairwise comparisons - outranking with Incomparabilities AHP : Pairwise comparisons No Incomparabilities …. 11/20/2018
26
The PROMETHEE METHOD 11/20/2018
27
11/20/2018
28
11/20/2018
29
11/20/2018
30
The foundations of the PROMETHEE method
The three steps of the method (1) Selecting generalized criteria (2) Determining an outranking relationship (3) Evaluating preferences 11/20/2018
31
The concept of generalized criteria
Where Ci(a) is a criterion to be optimized We consider a preference function d = Ci(a1) - Ci(a2) 11/20/2018
32
11/20/2018
33
“Diskrete gebeurtenis-gestuurd” is de vrije vertaling van “discrete event oriented”. In deze simulatie-methode wordt de tijd gediscretiseerd. Het model wordt aan wijzigingen onderworpen wanneer een “gebeurtenis” plaats grijpt, terwijl de “simulatieklok” een diskrete sprong maakt. Een gebeurtenis kan bv. de aankomst van een telefonische oproep zijn in een callcenter, of de aanvraag naar een wisselstuk in een logistiek depot. 11/20/2018
34
Choice of transformation functions
Operational criteria : type III Financial short term, acquisition cost, construction cost : type V Financial long term, maintenance cost, life cycle cost : type IV Discrete resources, manpower (roughly estimated) : type II Ecology, dramatic impact : type I Security, Quality, Aesthetics : type VI 11/20/2018
35
Parameter settings Indifference threshold : q Preference threshold : p
high if uncertainty, low accuracy of data Preference threshold : p close to maximum deviation if no loss of information is advisable (accurate data) Interactive choice in Promcalc 11/20/2018
36
The outranking relationship
For each criterion Ci we will associate the preference function P. (a1, a2) = wi * Pi (a1, a2) (Different weights) (a1, a2) = (1/m) * Pi (a1, a2) (All weights are equal) 11/20/2018
37
We have: 0 ( a1, a2) 1 Furthermore,
if ( a1, a2) 0 slight preference for "a1" over "a2" if ( a1, a2) 1 strong preference for "a1" over "a2" 11/20/2018
38
The outranking relationship
11/20/2018
39
Evaluating preferences
11/20/2018
40
The PROMETHEE I method a1 P+ a2 if +(a1) > +(a2)
a1 I+ a2 if +(a1) = +( a2) a1 P- a2 if -(a2) > -(a1) a1 I- a2 if -(a2) = -(a1) 11/20/2018
41
a1 I a2 " a1" and " a2" are indifferent if: a1 I+ a2 and a1 I- a2
a1 P a "a1" outranks "a2" if: a1 P+ a2 and a1 P- a2 a1 P+ a2 and a1 I- a2 a1 I+ a2 and a1 P- a2 a1 I a2 " a1" and " a2" are indifferent if: a1 I+ a2 and a1 I- a2 a1 R a2 "a1" and "a2" are incomparable: in all other cases 11/20/2018
42
The PROMETHEE II method
a1 PII a2 "a1" outranks "a2" if (a1) > (a2) a1 III a2 "a1" and "a2" are indifferent if (a1) = (a2) 11/20/2018
43
Example : 11/20/2018
44
Selecting the generalized criteria
11/20/2018
45
The data 11/20/2018
46
Devising the flow table
11/20/2018
47
Devising the flow table
11/20/2018
48
Devising the flow table
11/20/2018
49
Devising the flow table
11/20/2018
50
Devising the flow table
11/20/2018
51
Devising the flow table
11/20/2018
52
11/20/2018
53
11/20/2018
54
The ranking obtained using the Promethee I method
11/20/2018
55
The ranking obtained using the Promethee II method
11/20/2018
56
Flexibility of Prométhée
Weights Transformation functions = generalised criteria Parameter settings 11/20/2018
57
Thanks for your attention
MCDM Questions ? Suggestions ? 11/20/2018
58
AREOPA MOBIUS RUG RMA H.Pastijn
Questions ? 11/20/2018 AREOPA MOBIUS RUG RMA H.Pastijn
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.