Presentation is loading. Please wait.

Presentation is loading. Please wait.

Maximum Flow Solutions

Similar presentations


Presentation on theme: "Maximum Flow Solutions"— Presentation transcript:

1 Maximum Flow Solutions
ENGM 435/535 Maximum Flow Solutions

2 Maximum Flow Models 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8)
(Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (3,6) (5,7) (3,3) 3 5

3 Maximum Flow Models Maximal Flow 2 4 6 1 3 5 S S
(Flow, Capacity) [External Flow] Maximal Flow Capacity is only relevant parameter. Find maximal flow from source to sink. (4,4) 2 4 (6,8) (4,10) [-M] [M] (2,2) (0,3) (0,8) S 6 S 1 (3,6) (5,7) (3,3) 3 5

4 Maximum Flow Find a flow augmenting path defined by a sequence of arcs P =(k1, k2,. . . kp) Determine the maximum flow increase along the path Change the flow in the arcs on the path Repeat until no flow augmenting paths can be found

5 Maximum Flow Find an augmenting path
Determine the maximum flow augmentation possible Augment flow by that amount

6 Maximum Flow Models 2 4 6 1 3 5 (0,4) (0,8) (0,10) (0,2) (0,3) (0,8)
Find a path top to bottom that has Additional capacity. Increase flow to Available capacity (Flow, Capacity) (0,4) 2 4 (0,8) (0,10) (0,2) (0,3) (0,8) 6 1 (0,6) (0,7) (0,3) 3 5

7 Augmented Path 2 4 6 1 3 5 (4,4) (4,8) (4,10) (0,2) (0,3) (0,8) (0,6)
(Flow, Capacity) (4,4) 2 4 (4,8) (4,10) (0,2) (4) (0,3) (0,8) 6 1 (0,6) (0,7) (0,3) 3 5

8 Augmented Path 2 4 6 1 3 5 (4,4) (4,8) (4,10) (0,2) (0,3) (0,8) (0,6)
(Flow, Capacity) (4,4) 2 4 (4,8) (4,10) (0,2) (4) (0,3) (0,8) 6 1 (0,6) (0,7) (0,3) 3 5

9 Augmented Path 2 4 6 1 3 5 (4,4) (4,8) (4,10) (0,2) (0,3) (0,8) (0,6)
(Flow, Capacity) (4,4) 2 4 (4,8) (4,10) (0,2) (4) (0,3) (0,8) 6 1 (0,6) (0,7) (0,3) 3 5

10 Augmented Path 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8) (0,6)
(Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (6) (0,3) (0,8) 6 1 (0,6) (2,7) (0,3) 3 5

11 Augmented Path 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8) (0,6)
(Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (6) (0,3) (0,8) 6 1 (0,6) (2,7) (0,3) 3 5

12 Augmented Path 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8) (0,6)
(Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (6) (0,3) (0,8) 6 1 (0,6) (2,7) (0,3) 3 5

13 Augmented Path 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8) (0,6)
(Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (6) (0,3) (0,8) 6 1 (0,6) (2,7) (0,3) 3 5

14 Augmented Path 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8) (3,6)
(Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (9) (0,3) (0,8) 6 1 (3,6) (5,7) (3,3) 3 5

15 Augmented Path 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8) (3,6)
(Flow, Capacity) Arc 2-4 at capacity (4,4) 2 4 (6,8) (4,10) (2,2) (9) (0,3) (0,8) 6 1 (3,6) (5,7) (3,3) 3 5

16 Augmented Path 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8) (3,6)
(Flow, Capacity) Arc 2-4 at capacity Arc 2-5 at capacity (4,4) 2 4 (6,8) (4,10) (2,2) (9) (0,3) (0,8) 6 1 (3,6) (5,7) (3,3) 3 5

17 Augmented Path 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8) (3,6)
(Flow, Capacity) Arc 2-4 at capacity Arc 2-5 at capacity Arc 3-5 at capacity (4,4) 2 4 (6,8) (4,10) (2,2) (9) (0,3) (0,8) 6 1 (3,6) (5,7) (3,3) 3 5

18 Augmented Path 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8) (3,6)
(Flow, Capacity) No other path exists start to end that has additional capacity (4,4) 2 4 (6,8) (4,10) (2,2) (9) (0,3) (0,8) 6 1 (3,6) (5,7) (3,3) 3 5

19 Augmented Path 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8) (3,6)
(Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (9) (0,3) (0,8) 6 1 (3,6) (5,7) (3,3) 3 5

20 Minimum Cut Algorithm Find all possible cuts source to sink
Find the cut that has minimal capacity Minimal capacity cut = maximum flow

21 Minimum Cut Algorithm 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8)
(Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (3,6) (5,7) (3,3) 3 5 (Capacity = 14)

22 Minimum Cut Algorithm 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8)
(Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (3,6) (5,7) (3,3) 3 5 (Capacity = 14)

23 Minimum Cut Algorithm 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8)
(Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (3,6) (5,7) (3,3) 3 5 (Capacity = 11)

24 Minimum Cut Algorithm 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8)
(Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (3,6) (5,7) (3,3) 3 5 (Capacity = 17)

25 Maximum Flow Models 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8)
(Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (3,6) (5,7) (3,3) 3 5 (Capacity = 9)

26 Maximum Flow Models 2 4 6 1 3 5 (4,4) (6,8) (4,10) (2,2) (0,3) (0,8)
(Flow, Capacity) (4,4) 2 4 (6,8) (4,10) (2,2) (0,3) (0,8) 6 1 (3,6) (5,7) (3,3) 3 5 (Capacity = 9)


Download ppt "Maximum Flow Solutions"

Similar presentations


Ads by Google