Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture 9.1 Building a FET.

Similar presentations


Presentation on theme: "Lecture 9.1 Building a FET."— Presentation transcript:

1 Lecture 9.1 Building a FET

2 Integrated Circuits CPU or Memory First Layer Multi-layer Transistors
Capacitors Diode Resistors Multi-layer Wiring Interconnects Bonding Pads Dielectric Heterostructures

3 MOSFET in Memory Chip Source Gate Drain

4 Field Effect Transistor (FET)

5 Voltage Controlled Resistor

6

7 Make Mask for Doping Clean wafer surface Oxidize Si Surface
How Thick is needed for Doping Mask? Spin on photoresist Image photoresist Develop photoresist Dissolve un-crosslinked photoresist Etch exposed SiO2 down to the Si of the wafer Doping Remove Implantation Mask

8 Silicon Oxidation Reactor Kinetics Furnace at T=850C Pure Oxygen
Si + O2  SiO2 Kinetics BL-Mass Transfer J=Kg(CA-0) SS-Diffusion J=DO-SiO2 (dC/dx) Heat Transfer BL, q=h(T1-T) Solid, q=kSiO2(dT/dx) J=q/Hrxn Grxn<0, Spontaneous

9 Kinetics Thickness J =(dx/dt) SiO2/MW SiO2 Linear Rate Parabolic Rate
Reaction Control First Order BL-MT Control BL-HT Control Parabolic Rate Product diffusion Control Product heat transfer Control J =(dx/dt) SiO2/MW SiO2

10 Thickness Experiments
Parabolic Rate Derive it! dx2/dt=2K K=Ko exp(-Ea/RgT) t=0 x=  at t=  Very common!! Slow Solid State Diffusion Slow Heat Conduction

11 Mask Thickness To effectively prevent ions penetrating in thick zone
Relatively thick Oxide Protection layer Patterned Thinning (etching) of Oxide Protection layer over implantation zone Remove oxide layer with impurities inside

12 Mask Thickness Transmission through mask
T=1/2 erfc[(x-xave)/2 x] To stop 99.99% of implanted materials, T=10-4 Solve for x, the thickness to stop 99.99% of ions.

13 SiO2 Mask Thickness

14 Si3N4 Mask Thickness

15 Photoresist Mask Thickness

16 Implantation Create Ions in Vacuum Accelerate in Electric Field
Impinge onto Silicon Surface Knock out Si ion(s) Charge Balance Travel deep into Silicon

17 Implantation Effect of Ion Mass

18 Implant Depth Depth Increases with Energy

19 Implantation Straggle
Increases with Energy

20 Implantation Concentration Profile
Probability Based N(x)=Nmax exp[(x-xave)2/2x2] Nmax=(Ndose/[(2) x])~(0.4 Ndose/ x) Ndose=Qdose/e Qdose= current applied/cm2 σx = projected straggle

21 Remove Implantation Mask
Chemical Mechanical Polishing Stop etch at the desired thickness of the Gate Oxide Dry Etching

22 Gate Oxide Capacitor connecting Gate to center of npn or pnp heterojunction Capacitance Area Thickness Dielectric constant of oxide

23 Gate Oxide Capacitance
C=oA/d =C/Co =1+e e = electric susceptibility

24 Metalization Transistor Contacts
Base Emitter Gate Planarize/Polish layer to get Flat Surface for next lithography Step

25

26 Diffusion Deposition of B or P on surface
Heat and Hold for period of time Solid State Diffusion dC/dt=D d2C/dx2 C=Co at x=0 C=0 at x= C=Co(1-erf[x/(4Dt)]) Etch excess B or P from surface

27 Concentration Profile
time

28 Diffusion Coefficient
Self Diffusion D*=Doexp(-Ea/RgT) Diffusion of A in B Depends on A and matrix B DAB =(D*A XB + D*B XA) (d ln [aA]/d ln [XA]) d ln [aA]/d ln [XA] = 1+ (d ln [A]/d ln [XA]) d ln [aA]/d ln [XA] ~ 1 for ideal solutions And DAB =(D*A XB + D*B XA) = (D*A (1-XA) + D*B XA) Note Concentration dependence!! DAB ~D*A when XA ~0 , the dilute solution limit Good for dopants

29 Implant Depth Depth Increases with Energy

30 Diffusion of Implanted Dopants
Diffusion Furnace or Laser Heat Treatment Solid State Diffusion dCA/dt = CT d/dz (DAB dXA /dz) C=Co(z) = CT XA(z) at z=0 C=0 at z= DAB =(D*A XB + D*B XA) (d ln [aA]/d ln [XA]) Interdiffusion or mutual diffusion coefficient


Download ppt "Lecture 9.1 Building a FET."

Similar presentations


Ads by Google