Download presentation
Presentation is loading. Please wait.
1
Lecture 9.1 Building a FET
2
Integrated Circuits CPU or Memory First Layer Multi-layer Transistors
Capacitors Diode Resistors Multi-layer Wiring Interconnects Bonding Pads Dielectric Heterostructures
3
MOSFET in Memory Chip Source Gate Drain
4
Field Effect Transistor (FET)
5
Voltage Controlled Resistor
7
Make Mask for Doping Clean wafer surface Oxidize Si Surface
How Thick is needed for Doping Mask? Spin on photoresist Image photoresist Develop photoresist Dissolve un-crosslinked photoresist Etch exposed SiO2 down to the Si of the wafer Doping Remove Implantation Mask
8
Silicon Oxidation Reactor Kinetics Furnace at T=850C Pure Oxygen
Si + O2 SiO2 Kinetics BL-Mass Transfer J=Kg(CA-0) SS-Diffusion J=DO-SiO2 (dC/dx) Heat Transfer BL, q=h(T1-T) Solid, q=kSiO2(dT/dx) J=q/Hrxn Grxn<0, Spontaneous
9
Kinetics Thickness J =(dx/dt) SiO2/MW SiO2 Linear Rate Parabolic Rate
Reaction Control First Order BL-MT Control BL-HT Control Parabolic Rate Product diffusion Control Product heat transfer Control J =(dx/dt) SiO2/MW SiO2
10
Thickness Experiments
Parabolic Rate Derive it! dx2/dt=2K K=Ko exp(-Ea/RgT) t=0 x= at t= Very common!! Slow Solid State Diffusion Slow Heat Conduction
11
Mask Thickness To effectively prevent ions penetrating in thick zone
Relatively thick Oxide Protection layer Patterned Thinning (etching) of Oxide Protection layer over implantation zone Remove oxide layer with impurities inside
12
Mask Thickness Transmission through mask
T=1/2 erfc[(x-xave)/2 x] To stop 99.99% of implanted materials, T=10-4 Solve for x, the thickness to stop 99.99% of ions.
13
SiO2 Mask Thickness
14
Si3N4 Mask Thickness
15
Photoresist Mask Thickness
16
Implantation Create Ions in Vacuum Accelerate in Electric Field
Impinge onto Silicon Surface Knock out Si ion(s) Charge Balance Travel deep into Silicon
17
Implantation Effect of Ion Mass
18
Implant Depth Depth Increases with Energy
19
Implantation Straggle
Increases with Energy
20
Implantation Concentration Profile
Probability Based N(x)=Nmax exp[(x-xave)2/2x2] Nmax=(Ndose/[(2) x])~(0.4 Ndose/ x) Ndose=Qdose/e Qdose= current applied/cm2 σx = projected straggle
21
Remove Implantation Mask
Chemical Mechanical Polishing Stop etch at the desired thickness of the Gate Oxide Dry Etching
22
Gate Oxide Capacitor connecting Gate to center of npn or pnp heterojunction Capacitance Area Thickness Dielectric constant of oxide
23
Gate Oxide Capacitance
C=oA/d =C/Co =1+e e = electric susceptibility
24
Metalization Transistor Contacts
Base Emitter Gate Planarize/Polish layer to get Flat Surface for next lithography Step
26
Diffusion Deposition of B or P on surface
Heat and Hold for period of time Solid State Diffusion dC/dt=D d2C/dx2 C=Co at x=0 C=0 at x= C=Co(1-erf[x/(4Dt)]) Etch excess B or P from surface
27
Concentration Profile
time
28
Diffusion Coefficient
Self Diffusion D*=Doexp(-Ea/RgT) Diffusion of A in B Depends on A and matrix B DAB =(D*A XB + D*B XA) (d ln [aA]/d ln [XA]) d ln [aA]/d ln [XA] = 1+ (d ln [A]/d ln [XA]) d ln [aA]/d ln [XA] ~ 1 for ideal solutions And DAB =(D*A XB + D*B XA) = (D*A (1-XA) + D*B XA) Note Concentration dependence!! DAB ~D*A when XA ~0 , the dilute solution limit Good for dopants
29
Implant Depth Depth Increases with Energy
30
Diffusion of Implanted Dopants
Diffusion Furnace or Laser Heat Treatment Solid State Diffusion dCA/dt = CT d/dz (DAB dXA /dz) C=Co(z) = CT XA(z) at z=0 C=0 at z= DAB =(D*A XB + D*B XA) (d ln [aA]/d ln [XA]) Interdiffusion or mutual diffusion coefficient
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.