Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chap 9. General LP problems: Duality and Infeasibility

Similar presentations


Presentation on theme: "Chap 9. General LP problems: Duality and Infeasibility"โ€” Presentation transcript:

1 Chap 9. General LP problems: Duality and Infeasibility
Extend the duality theory to more general form of LP Consider the following form of LP maximize ๐‘—=1 ๐‘› ๐‘ ๐‘— ๐‘ฅ ๐‘— subject to ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— โ‰ค ๐‘ ๐‘– , (๐‘–โˆˆ๐ผ) ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— = ๐‘ ๐‘– , (๐‘–โˆˆ๐ธ) (9.1) ๐‘ฅ ๐‘— โ‰ฅ0, (๐‘—โˆˆ๐‘…) ๐น=๐‘\R, ๐‘= 1,2,โ€ฆ,๐‘› Want to define dual problem for this LP so that dual objective value gives an upper bound on the primal optimal value. (1) (2) OR

2 ๐‘ฆ ๐‘– ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— โ‰ค ๐‘ฆ ๐‘– ๐‘ ๐‘– , ๐‘ฆ ๐‘– โ‰ฅ0, ๐‘–โˆˆ๐ผ
Take linear combination of constraints with multiplier ๐‘ฆ ๐‘– for constraint ๐‘–. ๐‘ฆ ๐‘– โ‰ฅ0 for ๐‘–โˆˆ๐ผ, ๐‘ฆ ๐‘– unrestricted in sign for ๐‘–โˆˆ๐ธ ๏ƒž doesnโ€™t change the direction of the inequality. ๐‘ฆ ๐‘– ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— โ‰ค ๐‘ฆ ๐‘– ๐‘ ๐‘– , ๐‘ฆ ๐‘– โ‰ฅ0, ๐‘–โˆˆ๐ผ ๐‘ฆ ๐‘– ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— = ๐‘ฆ ๐‘– ๐‘ ๐‘– , ๐‘ฆ ๐‘– unrestricted, ๐‘–โˆˆ๐ธ Adding up on both sides ๏ƒž ๐‘–=1 ๐‘š ๐‘ฆ ๐‘– ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— โ‰ค ๐‘–=1 ๐‘š ๐‘ฆ ๐‘– ๐‘ ๐‘– holds for ๐‘ฅ satisfying (1) and ๐‘ฆ ๐‘– โ‰ฅ0, ๐‘–โˆˆ๐ผ, ๐‘ฆ ๐‘– unrestricted ๐‘–โˆˆ๐ธ. Now ๐‘–=1 ๐‘š ๐‘ฆ ๐‘– ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— = ๐‘—=1 ๐‘› ๐‘–=1 ๐‘š ๐‘Ž ๐‘–๐‘— ๐‘ฆ ๐‘– ๐‘ฅ ๐‘— โ‰ค ๐‘–=1 ๐‘š ๐‘ฆ ๐‘– ๐‘ ๐‘– Compare this with primal objective coefficient ๐‘ ๐‘— Want this as upper bound OR

3 ๐‘–=1 ๐‘š ๐‘ฆ ๐‘– ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— = ๐‘—=1 ๐‘› ๐‘–=1 ๐‘š ๐‘Ž ๐‘–๐‘— ๐‘ฆ ๐‘– ๐‘ฅ ๐‘— โ‰ค ๐‘–=1 ๐‘š ๐‘ฆ ๐‘– ๐‘ ๐‘–
๐‘–=1 ๐‘š ๐‘ฆ ๐‘– ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— = ๐‘—=1 ๐‘› ๐‘–=1 ๐‘š ๐‘Ž ๐‘–๐‘— ๐‘ฆ ๐‘– ๐‘ฅ ๐‘— โ‰ค ๐‘–=1 ๐‘š ๐‘ฆ ๐‘– ๐‘ ๐‘– Make ๐‘–=1 ๐‘š ๐‘Ž ๐‘–๐‘— ๐‘ฆ ๐‘– โ‰ฅ ๐‘ ๐‘— , if ๐‘—โˆˆ๐‘… ๐‘–=1 ๐‘š ๐‘Ž ๐‘–๐‘— ๐‘ฆ ๐‘– = ๐‘ ๐‘— , if ๐‘—โˆˆ๐น ๏ƒž ๐‘—=1 ๐‘› ๐‘ ๐‘— ๐‘ฅ ๐‘— โ‰ค ๐‘—=1 ๐‘› ๐‘–=1 ๐‘š ๐‘Ž ๐‘–๐‘— ๐‘ฆ ๐‘– ๐‘ฅ ๐‘— , โˆ€ ๐‘ฅ satisfying (2) ๏ƒž ๐‘—=1 ๐‘› ๐‘ ๐‘— ๐‘ฅ ๐‘— โ‰ค ๐‘–=1 ๐‘š ๐‘ ๐‘– ๐‘ฆ ๐‘– , โˆ€ ๐‘ฅ satisfying (1), (2) (i.e. for primal feasible ๐‘ฅ) & ๐‘ฆ satisfying the given conditions. ๏‚ฎ Gives weak duality relationship. We want strong bound, hence solve min ๐‘–=1 ๐‘š ๐‘ ๐‘– ๐‘ฆ ๐‘– s.t. ๐‘–=1 ๐‘š ๐‘Ž ๐‘–๐‘— ๐‘ฆ ๐‘– โ‰ฅ ๐‘ ๐‘— , (๐‘—โˆˆ๐‘…) ๐‘–=1 ๐‘š ๐‘Ž ๐‘–๐‘— ๐‘ฆ ๐‘– = ๐‘ ๐‘— , (๐‘—โˆˆ๐น) (dual problem) (9.9) ๐‘ฆ ๐‘– โ‰ฅ0, (๐‘–โˆˆ๐ผ) ( ๐‘ฆ ๐‘– free, (๐‘–โˆˆ๐ธ) ) OR

4 Primal-Dual Correspondence Primal Dual
maximize minimize ๐‘ฅ ๐‘— โ‰ฅ0 ๐‘— th constraint โ‰ฅ free ๐‘ฅ ๐‘— ๐‘— th constraint = ๐‘– th constraint โ‰ค ๐‘ฆ ๐‘– โ‰ฅ0 ๐‘– th constraint = free ๐‘ฆ ๐‘– OR

5 The dual of the dual is the primal: Problem (9.9) may be presented as
max ๐‘–=1 ๐‘š (โˆ’ ๐‘ ๐‘– ) ๐‘ฆ ๐‘– s.t. ๐‘–=1 ๐‘š (โˆ’ ๐‘Ž ๐‘–๐‘— ) ๐‘ฆ ๐‘– โ‰คโˆ’ ๐‘ ๐‘— , (๐‘—โˆˆ๐‘…) ๐‘–=1 ๐‘š (โˆ’ ๐‘Ž ๐‘–๐‘— ) ๐‘ฆ ๐‘– =โˆ’ ๐‘ ๐‘— , (๐‘—โˆˆ๐น) ๐‘ฆ ๐‘– โ‰ฅ0, (๐‘–โˆˆ๐ผ) and its dual problem is min ๐‘—=1 ๐‘› (โˆ’ ๐‘ ๐‘— ) ๐‘ฅ ๐‘— s.t. ๐‘—=1 ๐‘› (โˆ’ ๐‘Ž ๐‘–๐‘— ) ๐‘ฅ ๐‘— โ‰ฅโˆ’ ๐‘ ๐‘– , (๐‘–โˆˆ๐ผ) ๐‘—=1 ๐‘› (โˆ’ ๐‘Ž ๐‘–๐‘— ) ๐‘ฅ ๐‘— =โˆ’ ๐‘ ๐‘– , (๐‘–โˆˆ๐ธ) ๐‘ฅ ๐‘— โ‰ฅ0, (๐‘—โˆˆ๐‘…) which is just another presentation of (9.1). OR

6 Obtaining dual of unusual form
Ex) max 3 ๐‘ฅ 1 +2 ๐‘ฅ 2 +5 ๐‘ฅ max 3 ๐‘ฅ 1 +2 ๐‘ฅ 2 +5 ๐‘ฅ 3 s.t ๐‘ฅ 1 +3 ๐‘ฅ 2 + ๐‘ฅ 3 =โˆ’ s.t ๐‘ฅ 1 +3 ๐‘ฅ 2 + ๐‘ฅ 3 =โˆ’8 4 ๐‘ฅ 1 +2 ๐‘ฅ 2 +8 ๐‘ฅ 3 โ‰ค ๐‘ฅ 1 +2 ๐‘ฅ 2 +8 ๐‘ฅ 3 โ‰ค23 6 ๐‘ฅ 1 +7 ๐‘ฅ 2 +3 ๐‘ฅ 3 โ‰ฅ1 โˆ’6 ๐‘ฅ 1 โˆ’7 ๐‘ฅ 2 โˆ’3 ๐‘ฅ 3 โ‰คโˆ’1 ๐‘ฅ 1 โ‰ค4, ๐‘ฅ 3 โ‰ฅ ๐‘ฅ โ‰ค4 ๐‘ฅ 3 โ‰ฅ0 Dual problem is min โˆ’8 ๐‘ฆ ๐‘ฆ 2 โˆ’ ๐‘ฆ 3 +4 ๐‘ฆ 4 s.t ๐‘ฆ 1 +4 ๐‘ฆ 2 โˆ’6 ๐‘ฆ 3 + ๐‘ฆ 4 =3 3 ๐‘ฆ 1 +2 ๐‘ฆ 2 โˆ’7 ๐‘ฆ =2 ๐‘ฆ 1 +8 ๐‘ฆ 2 โˆ’3 ๐‘ฆ โ‰ฅ5 ๐‘ฆ 2 , ๐‘ฆ 3 , ๐‘ฆ 4 โ‰ฅ0 If the LP is given in minimization form, present the problem as (9.9) and then write (9.1). OR

7 Thm 9.1 (The Duality Theorem): If a linear programming problem has an optimal solution, then its dual has an optimal solution and the optimal values of the two problems coincide. Pf) proof parallels the idea for standard LP. At the termination of the simplex method, we identify dual vector ๐‘ฆ โˆ— from ๐‘ฆโ€ฒ๐ต= ๐‘ ๐ต โ€ฒ and show that it is dual feasible and ๐‘โ€ฒ ๐‘ฆ โˆ— =๐‘โ€ฒ ๐‘ฅ โˆ— . See text for details. ๏ฟ Weak duality and strong duality relationship hold for general primal, dual pair. OR

8 Consider a special case of the general LP max ๐‘ โ€ฒ ๐‘ฅ s.t. ๐ด๐‘ฅ=๐‘ ๐‘ฅโ‰ฅ0,
which is used as standard LP problem by some people (maybe in minimization form). Also it is the augmented form we used when we developed the simplex method in Chapter 2, 3. (๐ด:๐‘šร—๐‘›, full row rank) Its dual is min ๐‘ฆ โ€ฒ ๐‘ s.t. ๐‘ฆ โ€ฒ ๐ดโ‰ฅ๐‘โ€ฒ ๐‘ฆ unrestricted Suppose we solve the above primal problem using simplex method and find optimal basis ๐ต. Then the updated tableau is expressed the same way as we have seen before. OR

9 โˆ’๐‘ง+0โ€ฒ ๐‘ฅ ๐ต + ๐‘ ๐‘ โ€ฒโˆ’ ๐‘ ๐ต โ€ฒ ๐ต โˆ’1 ๐‘ ๐‘ฅ ๐‘ =โˆ’ ๐‘ ๐ต โ€ฒ ๐ต โˆ’1 ๐‘
โˆ’๐‘ง+0โ€ฒ ๐‘ฅ ๐ต + ๐‘ ๐‘ โ€ฒโˆ’ ๐‘ ๐ต โ€ฒ ๐ต โˆ’1 ๐‘ ๐‘ฅ ๐‘ =โˆ’ ๐‘ ๐ต โ€ฒ ๐ต โˆ’1 ๐‘ ๐‘ฅ ๐ต ๐ต โˆ’1 ๐‘ ๐‘ฅ ๐‘ = ๐ต โˆ’1 ๐‘ Here we donโ€™t have slack variables appearing. Since ๐‘ฆ is obtained from ๐‘ฆโ€ฒ๐ต= ๐‘ ๐ต โ€ฒ, the updated objective coefficients in the ๐‘งโˆ’row can be regarded as ๐‘ ๐‘— โˆ’๐‘ฆโ€ฒ ๐ด ๐‘— for all basic and nonbasic variables. At optimality, we have ๐‘ ๐‘— โˆ’๐‘ฆโ€ฒ ๐ด ๐‘— โ‰ค0, or ๐‘ฆโ€ฒ ๐ด ๐‘— โ‰ฅ ๐‘ ๐‘— , hence ๐‘ฆ is dual feasible vector. The dual objective function value is ๐‘ฆ โ€ฒ ๐‘, which is the same value as the current primal objective function value ๐‘ ๐ต โ€ฒ ๐ต โˆ’1 ๐‘= ๐‘ ๐ต โ€ฒ ๐‘ฅ ๐ต . Hence providing the proof that the current solution ๐‘ฅ is optimal to primal and ๐‘ฆ is optimal to dual respectively. OR

10 Unsolvable Systems of Linear Inequalities and Equations
Consider the following pair of constraints ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— โ‰ค ๐‘ ๐‘– ๐‘–โˆˆ๐ผ (9.13) ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— = ๐‘ ๐‘– ๐‘–โˆˆ๐ธ (number of constraints, i.e. ๐ผ + ๐ธ =๐‘›) ๐‘ฆ ๐‘– โ‰ฅ0, whenever ๐‘–โˆˆ๐ผ ๐‘–=1 ๐‘š ๐‘Ž ๐‘–๐‘— ๐‘ฆ ๐‘– =0, for all ๐‘—=1,2,โ€ฆ,๐‘› (9.16) ๐‘–=1 ๐‘š ๐‘ ๐‘– ๐‘ฆ ๐‘– <0 Then (9.13) is infeasible if and only if (9.16) is feasible. In other words, exactly one of (9.13) and (9.16) has a feasible solution (Theorem 9.2). (called theorem of the alternatives, many other versions, very important tool and has many applications.) OR

11 Then, we obtain ๐‘—=1 ๐‘› ๐‘–=1 ๐‘š ๐‘Ž ๐‘–๐‘— ๐‘ฆ ๐‘– ๐‘ฅ ๐‘— โ‰ค ๐‘–=1 ๐‘š ๐‘ ๐‘– ๐‘ฆ ๐‘– .
Pf in the text) ๏ƒœ) Suppose (9.16) has a feasible solution ๐‘ฆ. We multiply ๐‘ฆ ๐‘– on both sides of constraints in (9.13) ( ๐‘ฆ ๐‘– โ‰ฅ0 for ๐‘–โˆˆ๐ผ) and add the lhs and rhs, respectively. Then, we obtain ๐‘—=1 ๐‘› ๐‘–=1 ๐‘š ๐‘Ž ๐‘–๐‘— ๐‘ฆ ๐‘– ๐‘ฅ ๐‘— โ‰ค ๐‘–=1 ๐‘š ๐‘ ๐‘– ๐‘ฆ ๐‘– . Hence, ๐‘—=1 ๐‘› 0ร— ๐‘ฅ ๐‘— โ‰ค ๐‘–=1 ๐‘š ๐‘ ๐‘– ๐‘ฆ ๐‘– <0, which must be satisfied by any feasible ๐‘ฅ to (9.13). Since it is impossible to satisfy ๐‘—=1 ๐‘› 0ร— ๐‘ฅ ๐‘— <0 by any ๐‘ฅ, (9.13) is infeasible. ๏ƒž) Consider the linear program max ๐‘–=1 ๐‘š โˆ’ ๐‘ฅ ๐‘›+๐‘– (or min ๐‘–=1 ๐‘š ๐‘ฅ ๐‘›+๐‘– ) s.t. ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— + ๐‘ค ๐‘– ๐‘ฅ ๐‘›+๐‘– โ‰ค ๐‘ ๐‘– ๐‘–โˆˆ๐ผ ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— + ๐‘ค ๐‘– ๐‘ฅ ๐‘›+๐‘– = ๐‘ ๐‘– ๐‘–โˆˆ๐ธ (9.18) ๐‘ฅ ๐‘›+๐‘– โ‰ฅ0 ๐‘–=1, 2, โ€ฆ,๐‘š with ๐‘ค ๐‘– =1 if ๐‘ ๐‘– โ‰ฅ0 and ๐‘ค ๐‘– =โˆ’1 if ๐‘ ๐‘– <0. (9.18) has a feasible solution (with ๐‘ฅ=0 for original variables). Also the upper bound on the optimal value is 0, hence it has finite optimal. OR

12 (continued) The optimal value of (9. 18) is 0 if and only if (9
(continued) The optimal value of (9.18) is 0 if and only if (9.13) has a feasible solution. If (9.13) is unsolvable, then the optimal value of (9.18) is negative. Then duality theorem guarantees that the dual of (9.18) has optimal value which is negative. min ๐‘–=1 ๐‘š ๐‘ ๐‘– ๐‘ฆ ๐‘– s.t. ๐‘–=1 ๐‘š ๐‘Ž ๐‘–๐‘— ๐‘ฆ ๐‘– =0 ๐‘—=1, 2, โ€ฆ,๐‘› ๐‘ค ๐‘– ๐‘ฆ ๐‘– โ‰ฅโˆ’1 ( ๐‘–=1,2,โ€ฆ,๐‘š) ๐‘ฆ ๐‘– โ‰ฅ0 ๐‘–โˆˆ๐ผ Then the optimal dual solution ๐‘ฆ 1 , ๐‘ฆ 2 , โ€ฆ, ๐‘ฆ ๐‘š satisfies (9.16). ๏‚† OR

13 Consider the following primal-dual pair
Alternative proof) Consider the following primal-dual pair (P) max ๐‘—=1 ๐‘› 0 ๐‘ฅ ๐‘— (coefficients of ๐‘ฅ ๐‘— are all 0) ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— โ‰ค ๐‘ ๐‘– ๐‘–โˆˆ๐ผ ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— = ๐‘ ๐‘– ๐‘–โˆˆ๐ธ ๐ผ + ๐ธ =๐‘š (D) min ๐‘–=1 ๐‘š ๐‘ ๐‘– ๐‘ฆ ๐‘– ๐‘–=1 ๐‘š ๐‘Ž ๐‘–๐‘— ๐‘ฆ ๐‘– =0 for all ๐‘—=1, 2, โ€ฆ, ๐‘› ๐‘ฆ ๐‘– โ‰ฅ0 whenever ๐‘–โˆˆ๐ผ ๏ƒœ) Suppose (9.16) has a feasible solution ๐‘ฆ with ๐‘ โ€ฒ ๐‘ฆ<0. Then ๐œ†๐‘ฆ is feasible to (D) for all ๐œ†>0. Then ๐‘ โ€ฒ ๐œ†๐‘ฆ โ†’ โˆ’โˆž as ๐œ†โ†’โˆž, hence (D) is unbounded. Therefore (P) is infeasible, i.e. (9.13) is infeasible, from the possible primal-dual statuses. OR

14 (pf continued) ๏ƒž) Suppose (9. 13) is infeasible, i. e
(pf continued) ๏ƒž) Suppose (9.13) is infeasible, i.e. (P) does not have a feasible solution. Then (D) is either infeasible or unbounded. But ๐‘ฆ=0 is a feasible solution to (D), hence the only remaining possibility is (D) unbounded. Then (9.16) has a feasible solution with ๐‘ โ€ฒ ๐‘ฆ<0. ๏ฟ OR

15 have precisely the same set of solutions and
Thm 9.3 : If a system of ๐‘š linear equations has a nonnegative solution, then it has a solution with at most ๐‘š variables positive. Pf) If the system ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— = ๐‘ ๐‘– ๐‘–=1, 2, โ€ฆ, ๐‘š (9.19) ๐‘ฅ ๐‘— โ‰ฅ0 ๐‘—=1, 2, โ€ฆ,๐‘› has a solution, then, by Theorem 8.3, there is some set ๐ผ of subscripts 1, 2, โ€ฆ, ๐‘š such that (i) system (9.19) and ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— = ๐‘ ๐‘– ๐‘–โˆˆ๐ผ (9.20) have precisely the same set of solutions and (ii) system (9.20) has a basic feasible solution ๐‘ฅ 1 โˆ— , ๐‘ฅ 2 โˆ— , โ€ฆ, ๐‘ฅ ๐‘› โˆ— . Now at most ๐ผ variables are positive at a b.f.s. OR

16 Theorem 9.3 can be used to the case
Note that if ๐‘ is considered as a vector in ๐‘… ๐‘š , (9.19) means ๐‘ can be expressed as a nonnegative linear combination of columns of coefficient matrix ๐ด (๐‘ is in a cone generated by the columns of ๐ด). (Caratheodoryโ€™s Thm) Theorem 9.3 can be used to the case ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— = ๐‘ ๐‘– ๐‘–=1, 2, โ€ฆ,๐‘š (9.19) ( ๐‘— ๐ด ๐‘— ๐‘ฅ ๐‘— =๐‘ ) ๐‘—=1 ๐‘› ๐‘ฅ ๐‘— =1 ๐‘ฅ ๐‘— โ‰ฅ0 ๐‘—=1, 2, โ€ฆ,๐‘› , which means ๐‘โˆˆ ๐‘… ๐‘š can be expressed as a convex combination of column vectors of ๐ด. The Theorem can now be said that we need at most ๐‘š+1 variables positive. Caratheodoryโ€™s theorem says that, if a vector ๐‘โˆˆ ๐‘… ๐‘š is in the convex hull of a set ๐‘†, then ๐‘ can be expressed as a convex combination of at most ๐‘š+1 points of ๐‘†. OR

17 This subsystem is unsolvable.
Thm 9.4 : Every unsolvable system of linear inequalities in ๐‘› variables contains an unsolvable subsystem of at most ๐‘›+1 inequalities. Pf) If ๐ด๐‘ฅโ‰ค๐‘ unsolvable, then, by Theorem 9.2, there exists ๐‘ฆ โˆ— which satisfies ๐‘ฆ โˆ— โ‰ฅ0, ๐‘ฆ โˆ— โ€ฒ๐ด=0, ๐‘ฆ โˆ— โ€ฒ๐‘<0. Denote ๐‘ฆ โˆ— โ€ฒ๐‘ by ๐‘ (e.g. โˆ’1, note that if ๐‘ฆ โˆ— is a feasible solution to above, then ๐œ† ๐‘ฆ โˆ— , ๐œ†>0 is also feasible, so the actual value of ๐‘ฆ โˆ— โ€ฒ ๐‘ can be chosen as any negative value.), and consider the system ๐‘ฆ โ€ฒ ๐ด=0, ๐‘ฆ โ€ฒ ๐‘=๐‘ consisting of ๐‘›+1 equations. Since ๐‘ฆ โˆ— is a nonnegative solution, Theorem 9.3 guarantees the existence of nonnegative solution ๐‘ฆ with at most ๐‘›+1 positive components ๐‘ฆ ๐‘– . The desired subsystem consists of those inequalities ๐‘—=1 ๐‘› ๐‘Ž ๐‘–๐‘— ๐‘ฅ ๐‘— โ‰ค ๐‘ ๐‘– for which ๐‘ฆ ๐‘– >0; since ๐‘– ๐‘ฆ ๐‘– ๐‘Ž ๐‘–๐‘— =0 for all ๐‘— but ๐‘– ๐‘ ๐‘– ๐‘ฆ ๐‘– =๐‘<0. This subsystem is unsolvable. OR


Download ppt "Chap 9. General LP problems: Duality and Infeasibility"

Similar presentations


Ads by Google