Download presentation
Presentation is loading. Please wait.
Published byCoral Fields Modified over 6 years ago
1
Your turn (Review) What does a lambda expression return when it is evaluated? the value of a lambda expression is a procedure What three things are in the code of every recursive algorithm? a recursive case a base case a test Which of the following is a use of lambda? 1. (define fred +) 2. (define (fred x) (+ x x)) only 2: (define fred (lambda (x) (+ x x))) מבוא מורחב
2
(define (sqrt-iter guess x) (if (good-enough? guess x) guess
(define (sqrt x) (sqrt-iter 1.0 x)) (define (sqrt-iter guess x) (if (good-enough? guess x) guess (sqrt-iter (improve guess x) x))) (define (good-enough? guess x) (< (abs (- (square guess) x)) 0.001)) (define (improve guess x) (average guess (/ x guess))) מבוא מורחב
3
Block Structure (define (sqrt x) (define (good-enough? guess x)
(< (abs (- (square guess) x)) 0.001)) (define (improve guess x) (average guess (/ x guess))) (define (sqrt-iter guess x) (if (good-enough? guess x) guess (sqrt-iter (improve guess x) x))) (sqrt-iter 1.0 x)) מבוא מורחב
4
Binding names קשירת שמות
A procedure F binds a name x if either 1. x is a formal parameter of F 2. x is a name defined internally in F (define (F x y z) (define (h y) (* y y) (+ (h x) (h y) (h z))) h, x, y, z are bound in F y is bound in h
5
עידון מודל ההצבה An occurrence of a name is bound by the innermost procedure that binds the name and contains the occurrence in its body. When replacing a formal parameter by the corresponding argument, do not substitute for occurences that are bound by an internal definition. מבוא מורחב
6
refining the substitution model
(define (sqrt x) (define (good-enough? guess x) (< (abs (- (square guess) x)) 0.001)) (define (improve guess x) (average guess (/ x guess))) (define (sqrt-iter guess x) (if (good-enough? guess x) guess (sqrt-iter (improve guess x) x))) (sqrt-iter 1.0 x)) (sqrt 2) מבוא מורחב
7
(define (good-enough? guess x)
(sqrt 2) (define (good-enough? guess x) (< (abs (- (square guess) x)) 0.001)) (define (improve guess x) (average guess (/ x guess))) (define (sqrt-iter guess x) (if (good-enough? guess x) guess (sqrt-iter (improve guess x) x))) (sqrt-iter 1.0 2) מבוא מורחב
8
Scheme uses Lexical Scoping
ערך משתנה חופשי בפונקציה F נקבע על פי מקום הגדרת F. (ולא על פי מקןם הפעלת F) פונקציה המכילה את הגדרת F תקבע את ערכו. מבוא מורחב
9
(define (good-enough? guess x)
(define (sqrt x) (define (good-enough? guess x) (< (abs (- (square guess) x)) 0.001)) (define (improve guess x) (average guess (/ x guess))) (define (sqrt-iter guess x) (if (good-enough? guess x) guess (sqrt-iter (improve guess x) x))) (sqrt-iter 1.0 x)) מבוא מורחב
10
Taking advantage of Lexical Scoping
(define (sqrt x) (define (good-enough? guess) (< (abs (- (square guess) x)) 0.001)) (define (improve guess) (average guess (/ x guess))) (define (sqrt-iter guess) (if (good-enough? guess) guess (sqrt-iter (improve guess)))) (sqrt-iter 1.0)) (sqrt 2) מבוא מורחב
11
(define (good-enough? guess) (< (abs (- (square guess) 2)) 0.001))
(sqrt 2) (define (good-enough? guess) (< (abs (- (square guess) 2)) 0.001)) (define (improve guess) (average guess (/ 2 guess))) (define (sqrt-iter guess) (if (good-enough? guess) guess (sqrt-iter (improve guess)))) (sqrt-iter 1.0) (if (good-enough? 1.0) 1.0 (sqrt-iter (improve 1.0))) מבוא מורחב
12
(define (h x) (define (f y) (+ x y)) (define (g x) (f x)) (g (* 2 x)))
(define (f y) (+ 1 y)) (define (g x) (f x)) (g (* 2 1)) (f 2) ( ) 3 מבוא מורחב
13
Applicative order evaluation
Combination … (<operator> <operand1> …… <operand n>) Evaluate <operator> to get the procedure and evaluate <operands> to get the arguments If <operator> is primitive: do whatever magic it does If <operator> is compound: evaluate body with formal parameters replaced by arguments מבוא מורחב
14
Normal order evaluation
Combination … (<operator> <operand1> …… <operand n>) Evaluate <operator> to get the procedure and evaluate <operands> to get the arguments If <operator> is primitive: do whatever magic it does If <operator> is compound: evaluate body with formal parameters replaced by arguments מבוא מורחב
15
((lambda (x) (+ x x)) (* 3 4)) (+ (* 3 4) (* 3 4)) (+ 12 12) 24
Normal ((lambda (x) (+ x x)) (* 3 4)) (+ (* 3 4) (* 3 4)) ( ) 24 Applicative ((lambda (x) (+ x x)) (* 3 4)) ((lambda (x) (+ x x)) 12) ( ) 24 This may matter in some cases: ((lambda (x y) (+ x 2)) 3 (/ 1 0)) מבוא מורחב
16
Compute ab a * a(b-1) (exp-1 2 2) ==> 4 wishful thinking :
base case : a * a(b-1) a0 = 1 (define exp-1 (lambda (a b) (if (= b 0) 1 (* a (exp-1 a (- b 1)))))) מבוא מורחב
17
exp-1 is a recursive algorithm
In a recursive algorithm, bigger operands => more space (define exp-1 (lambda (a b) (if (= b 0) 1 (* a (exp-1 a (- b 1))))))(fact 4) (exp-1 2 3) (if (= 3 0) 1 (* 2 (exp-1 2 (- 3 1)))) (* 2 (exp-1 2 2)) .. (* 2 (* 2 (exp-1 2 1))) (* 2 (* 2 (* 2 (exp-1 2 0)))) An iterative algorithm uses constant space מבוא מורחב
18
Intuition for iterative ab
same as you would do if calculating 24 by hand: start with 1 (4 more to go) 1. multiply 1 by 2 gives 2 (3 more to go) 2. multiply 2 by 2 gives 4 (2 more to go) 3. multiply 4 by 2 gives 8 (1 more to go) 4. multiply 8 by 2 gives 16 (0 more to go) At each step, only need to remember: current product, how many times has yet to multiply Therefore, constant space מבוא מורחב
19
In scheme: (define (exp-2 a b) (define (exp-iter a b product)
(if (= b 0) product (exp-iter a (- b 1) (* a product)))) (exp-iter a b 1) מבוא מורחב
20
A trace (exp-2 3 4) (exp-iter 3 4 1) (exp-iter 3 3 3) (exp-iter 3 2 9)
(define (exp-2 a b) (define (exp-iter a b product) (if (= b 0) product (exp-iter a (- b 1) (* a product)))) (exp-iter a b 1) (exp ) (exp-iter 3 4 1) (exp-iter 3 3 3) (exp-iter 3 2 9) (exp-iter ) (exp-iter ) 81 מבוא מורחב
21
Recursive = pending operations when procedure calls itself
Recursive exponentiation: (define exp-1 (lambda (a b) (if (= b 0) 1 (* a (exp-1 a (- b 1)))))) (exp-1 2 3) (if (= 3 0) 1 (* 2 (exp-1 2 (- 3 1)))) (* 2 (exp-1 2 2)) .. (* 2 (* 2 (exp-1 2 1))) (* 2 (* 2 (* 2 (exp-1 2 0))))(fact 4) operation pending Pending ops make the expression grow continuously
22
Iterative = no pending operations
Iterative exponentiation: (define (exp-2 a b) (define (exp-iter a b product) (if (= b 0) product (exp-iter a (- b 1) (* a product)))) (exp-iter a b 1)) (exp ) (exp-iter 3 4 1) (exp-iter 3 3 3) (exp-iter 3 2 9) (exp-iter ) (exp-iter ) 81 Fixed size because no pending operations no pending operations
23
Summary Iterative algorithms have constant space
Using substitution the expression doesn’t grow. Iterative algorithms have no pending operations when the procedure calls itself How to develop an iterative algorithm figure out a way to accumulate partial answers translate rules into scheme code מבוא מורחב
24
Orders of growth of processes
Suppose n is a parameter that measures the size of a problem Let R(n) be the amount of resources needed to compute a procedure of size n. Two common resources are space, measured by the number of deferred operations, and time, measured by the number of primitive steps. Want to estimate the “order of growth” of R(n): R1(n)=100n R2(n)=2n2+10n R3(n) = n2 Are all the same in the sense that if we multiply the input by a factor of 2, the resource consumption increase by a factor of 4 מבוא מורחב
25
Orders of growth of processes
We say R(n) has order of growth Q(f(n)) if there are constants k1 and k2 such that k1f(n)<= R(n)<= k2f(n) for all n R(n) O(f(n)) if there is a constant k such that R(n) <= k f(n) for all n R(n) (f(n)) if there is a constant k such that k f(n) <= R(n) for all n 100n2 O(n) x 100n2 (n) k1, k2, k 0 100n2 Q (n) x 100n2 Q (n2) מבוא מורחב
26
Resources consumed by exp-1
In a recursive algorithm, bigger operands => more space (define exp-1 (lambda (a b) (if (= b 0) 1 (* a (exp-1 a (- b 1))))))(fact 4) (exp-1 2 3) (if (= 3 0) 1 (* 2 (exp-1 2 (- 3 1)))) (* 2 (exp-1 2 2)) .. (* 2 (* 2 (exp-1 2 1))) (* 2 (* 2 (* 2 (exp-1 2 0)))) Space Q(b) Time Q(b) מבוא מורחב
27
Resources consumed by exp-2
(define (exp-2 a b) (define (exp-iter a b product) (if (= b 0) product (exp-iter a (- b 1) (* a product)))) (exp-iter a b 1) (exp ) (exp-iter 3 4 1) (exp-iter 3 3 3) (exp-iter 3 2 9) (exp-iter ) (exp-iter ) 81 Space Q(1) Time Q(b) מבוא מורחב
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.