Download presentation
Presentation is loading. Please wait.
1
Chapter 19: Air Pressure and Wind
2
What is Air Pressure? Air pressure is the pressure exerted on all objects by the weight of the air above. Air pressure is dependent on altitude, because the higher the altitude, the less air is above, and as a result, the air pressure will be lower. We can measure air pressure by using a device called a barometer.
3
Air Pressure and Barometers
4
How Does a Barometer Work?
A mercury barometer is a glass tube filled with mercury that is turned upside down in a dish or bowl filled with mercury. When air pressure increases, the air pushes down on the mercury in the dish, which raises the height of the mercury in the tube. A newer barometer called an aneroid barometer has the advantage that it is more portable and can keep a record of changes in air pressure.
5
Barometers
6
How Does Air Pressure Affect Wind?
Air pressure is the main cause of wind. When one area has a higher pressure than another, the area with the high pressure will blow to the area of low pressure. Unequal heating of the earth's surface causes the differences in the pressure. The difference in air pressure between two different locations is called the pressure gradient.
7
Pressure Gradient and the Wind
8
Air Pressure and Pressure Gradients
Meteorologists use pressure gradients to predict wind speeds and wind directions. The greater and steeper the pressure gradient, the faster the wind. The lesser and shallower the pressure gradient, the calmer the wind.
9
Pressure Gradient and the Wind
10
Pressure Gradients and Isobars
Meteorologists also use maps with lines drawn on the map called isobars to connect areas of equal pressure. When isobars are drawn close together, the pressure gradient is steep. When the pressure gradient is steep, the winds will be fast. When the pressure gradient is shallow, winds will be calm.
11
Isobars and Pressure Gradients
12
What is the Coriolis Effect?
The earth rotates on its axis. The equator spins at a much faster pace than the poles. Because of this difference in motion, the air at the equator experiences more air resistance due to friction. This difference in motion causes the air at the equator to be deflected in the opposite direction as the earth's rotation. This is what's known as the Coriolis effect.
13
The Coriolis Effect
14
Anticyclones and Cyclones
Areas of low pressure and high pressure have a central area where the pressure is the lowest and the highest. The center of a low pressure is called a cyclone. The center of a high pressure is called an anticyclone.
15
Cyclones
16
Anticyclones and Cyclones
In a cyclone, winds blow in towards the center like a vacuum. In an anticyclone, winds blow away from the center. Because of the Coriolis effect, in the Northern hemisphere, the winds also blow counterclockwise in a cyclone. In the N. hemisphere, the winds blow clockwise away from an anticyclone.
17
Cyclones and Anticyclones
18
How do Anticyclones and Cyclones Affect Weather Patterns?
Meteorologists use information from barometers to determine the locations and movements of cyclones and anticyclones. A cyclone produces cloudy and rainy weather because air is moving in and rising. Rising air produces clouds from adiabatic cooling and air reaching the dew point.
19
Cyclones and Anticyclones
20
How do Anticyclones and Cyclones Affect Weather Patterns?
In an anticyclone, air is sinking to the ground. When air descends, it warms, which causes the relative humidity to lower. As a result, anticyclones produce clear beautiful skies with almost no clouds and rain.
21
Cyclones and Anticyclones
22
Global Wind Patterns At the earth's equator there is a general pattern of cyclones to occur called the equatorial low. Lots of rainfall and tropical rainforests are found in the equatorial low region. At about 30 degrees North and South of the equator, there is an area that produces anticyclones called the subtropical high. Hot, arid conditions produce deserts near the subtropical high.
23
Global Wind Patterns
24
Global Wind Patterns The Coriolis effect causes the global wind patterns as well. From the subtropical high to the equatorial low, the winds blow from east to west. These winds are called the trade winds. From about 30 degrees North and South of the equator to about 60 degrees North and South, the winds blow from West to East. These winds are known as the Westerlies.
25
Trade Winds and Westerlies
26
Global Wind Patterns At about 60 degrees North and South of the equator, there is another cyclone region known as the subpolar low. At the subpolar low, cold air masses from the North and warm air masses from the South come together to produce frontal wedging, which creates cloudy, wet weather. This area of cloudy wet weather is known as the polar front.
27
Polar Front
28
Polar Front
29
Global Wind Patterns The winds North and South of the 60 degree latitude line generally blow from West to East to produce winds called the Polar Easterlies. At the poles there is another anticyclone zone called the polar high. The polar high is generally cold and dry.
30
Polar Easterlies
31
Local Wind Patterns Winds can also be controlled by variations of the local topography and surface composition. Land and Sea Breezes – Areas located by large bodies of water can be influenced by land and sea breezes. Land changes temperatures faster than water. Land heats up faster in the day. The heat creates rising air. This creates sea breezes that blow in from the water to the land.
32
Land and Sea Breezes
33
Local Wind Patterns At night, the larger bodies of water stay warm as the land cools off more quickly. This causes the air to rise over the water and the air over land to move out to sea. This causes land breezes to occur. Valley and Mountain Breezes – valley and mountain Breezes work similarly to land and sea breezes. Mountainous terrain changes temperature quicker than the vegetated valley floors.
34
Local Wind Patterns In the heat of the day, the mountains heat up quickly, causing air to rise. This draws air up the valleys (updrafts) to the mountains. This causes a valley breeze. At night the mountains cool off more quickly than the valleys. This creates downdrafts which flow down from the mountains. This causes a mountain breeze.
35
Valley and Mountain Breezes
36
How Wind is Measured Wind direction can be determined by a wind vane. The direction the wind travels most of the time is referred to as the prevailing wind. Wind speed can be determined by using a device known as a wind anemometer.
37
Anemometer
38
El Nino Weather Patterns
At irregular intervals of 3-7 years, warm countercurrents in the Pacific Ocean become unusually strong and replace the usual cold waters with unusual warm waters. This pattern, known as El Nino effects both local and global weather patterns. During years of El Nino, fishing is poor and farming is good near Ecuador and Peru. Winters are wetter and warmer than average in the U.S. At the same time, Australia usually suffers from extreme heat and drought from El Nino.
39
Normal Wind and Weather Patterns
40
El Nino Wind and Weather Patterns
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.