Download presentation
Presentation is loading. Please wait.
Published byDwain Wilcox Modified over 6 years ago
4
Abstarct Neutrophils express Toll-like receptors (TLRs) for the recognition of conserved bacterial elements to initiate antimicrobial responses. However, whether other cytosolic DNA sensors are expressed by neutrophils remains elusive. Here we found constitutive expression of the transcription factor Sox2 in the cytoplasm of mouse and human neutrophils. Neutrophil-specific Sox2 deficiency exacerbated bacterial infection. Sox2 directly recognized microbial DNA through its high-mobility-group (HMG) domain. Upon challenge with bacterial DNA, Sox2 dimerization was needed to activate a complex of the kinase TAK1 and its binding partner TAB2, which led to activation of the transcription factors NF-κB and AP-1 in neutrophils. Deficiency in TAK1 or TAB2 impaired Sox2-mediated antibacterial immunity. Overall, we reveal a previously unrecognized role for Sox2 as a cytosolic sequence-specific DNA sensor in neutrophils, which might provide potential therapeutic strategies for the treatment of infectious diseases.
8
KJ Science 10 April 2015: Vol. 348 no. 6231 Research Article Substrate degradation by the proteasome: A single-molecule kinetic analysis Ying Lu1, Byung-hoon Lee2, Randall W. King2, Daniel Finley2, Marc W. Kirschner1,* 1Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA. 2Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA Abstract Protein degradation, mediated by the ubiquitin-proteasome system (UPS), plays a critical and complementary role to transcription, splicing, and translation in the control of gene expression. Effective regulation of the UPS relies on the specificity of substrate recognition, which is conferred largely by the upstream ubiquitylation process. As a specific example, the anaphase-promoting complex (APC) acting on a series of substrates promotes waves of ubiquitylation and degradation, leading to key transitions in the cell cycle. However, in this cascade the proteasome itself also plays a role in the specificity of degradation. There have been various efforts to characterize this role, leading to a commonly held view that a substrate protein must be conjugated with a chain of at least four ubiquitins to be recognized by the proteasome. Yet mass spectrometry studies show that ubiquitin chains on APC substrates (such as cyclin B) contain, on average, only two ubiquitins. But these can have complex ubiquitin configurations created by the multiplicity of ubiquitylated lysine residues. Therefore, the tetraubiquitin chain selection rule may not be generally applicable, and the mechanism by which the proteasome recognizes substrates is still shrouded in mystery.
9
KJ
10
KJ
11
KJ
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.