Download presentation
Presentation is loading. Please wait.
Published byθάνα Ζαΐμης Modified over 6 years ago
1
Probing Supersymmetry with Neutral Current Scattering Experiments
Shufang Su • U. of Arizona
2
Sub-Z precision measurements
neutral current scattering heavy quark physics CP violation, EDM Rare K-decay, CKM unitarity muon g-2 lepton flavor violation … polarized ee scattering (SLAC E158) polarized ep scattering (JLab Qweak) neutrino-nucleus scattering (NuTeV) A. Kurylov, M. Ramsey-Musolf, SS S. Su LOOPFESTIII
3
Outline motivation parity-violating electron scattering experiments
radiative corrections to weak charge QW analysis of SUSY contributions to QW MSSM contributions RPV analysis distinguish various new physics / SUSY NuTeV experiment conclusion S. Su LOOPFESTIII
4
Motivation high precision low energy experiment available
- high precision low energy experiment available - muon g-2: M=m , new 2x10-9, exp < 10-9 -decay, -decay: M=mW , new 10-3, exp 10-3 parity-violating electron scattering: M=mW , new 10-3, 1/Qe,pW 10 more sensitive to new physics need exp “easier” experiment indirect+direct: complementary information consistency test of theory at loop level size of loop effects from new physics: (/)(M/Mnew)2 Qe,pW 1-4 sin2W 0.1 probe new physics off the Z-resonance - sensitive to new physics not mix with Z S. Su LOOPFESTIII
5
Test of sin2W running sin2W(0) - sin2W(mZ2) = +0.007
QCsw: agree Q2=0 NuTeV: +3 Q2=20 (GeV)2 parity-violating electron scattering (PVES) ee Moller scattering (SLAC) QeW ep elastic scattering (J-lab) QpW - - sin2W at Q2=0.03 (GeV)2 clean environment: Hydrogen target theoretically clean: small hadronic uncertainties tree level 0.1 sensitive to new physics S. Su LOOPFESTIII
6
Goal Develop consistency checks for theories of new physics
- Develop consistency checks for theories of new physics using the low energy precision measurements minimal Supersymmetric extension of SM (MSSM) SUSY: most promising candidate for new physics solution to Hierarchy problem gauge coupling unification provide a natural electroweak symmetry breaking dark matter candidate ? (PVES) with R-parity : loop corrections without R-parity: tree-level contribution low-energy precision measurements PVES: weak charge QeW , QpW , ( QCsW ) - NuTeV: R() - S. Su LOOPFESTIII
7
Weak charge QW A N+-N- ALR QfW N++N- V geA = Ie3
weak charge QfW = 2gfV = 2 If3 -4Qfs2 ep Qweak exp QpW ee Moller exp QeW Qe,pW tree 1-4s2 -(1-4s2) Qe,pW loop exp precision 4% 8% sin2W SM running 10 8 QCsW : sin2W = NuTeV: sin2W = S. Su LOOPFESTIII
8
General structure of radiative corrections to QfW
- Including radiative corrections: QfW = (2If3 - 4 Qf s2) + f , : universal, f: depend on fermion species = 1+SM+SUSY, = 1+SM+SUSY, f= fSM+fSUSY correction to muon life time S. Su LOOPFESTIII
9
Radiative contributions
- QfW = (2If3 - 4 Qf s2) + f correction to , G and mZs2 f S. Su LOOPFESTIII
10
MSSM particle contents
- Spin differ by 1/2 SM particle superpartner mass parameter mqL2, mqR2, mqLR2 mlL2, mlR2, mlLR2 , tan=vu/vd M3 M2 M1 S. Su LOOPFESTIII
11
One loop SUSY contributions to PVES
- gauge boson self-energies external leg corrections vertex corrections box diagrams S. Su LOOPFESTIII
12
50 GeV < mq, ml, M1,2, < 1000 GeV
Numerical analysis - Model-independent analysis MSSM parameter range: random scan 50 GeV < mq, ml, M1,2, < 1000 GeV 1.4 < tan < 60 ~ hard to impose bounds on certain MSSM parameter show the possible range of MSSM corrections impose exp search limit on SUSY particles impose S-T 95% CL constraints impose g-2 constraints (2nd slepton LR mixing) S. Su LOOPFESTIII
13
Correction to weak charge
- QfW = (2Tf3 - 4Qf s2) + f QeW and QpW correlated dominant : (<0) negative shift in sin2W (QpW)SUSY / (QpW)SM < 4%, (QeW)SUSY / (QeW)SM < 8% S. Su LOOPFESTIII
14
Dominant contributions
- QfW = (2Tf3 - 4Qf s2) + f non-universal corrections vertex + wavefunction : cancel box diagrams numerically suppressed contribution suppressed by (1-4 s2) dominant contribution from (<0) negative shift in sin2W S. Su LOOPFESTIII
15
R-parity General MSSM, including B,L-violating operators ijk ’ijk
dangerous introduce proton decay R-parity SM particle: even superparticle: odd stable LSP as dark matter candidate RPV: only look at L-violating operator S. Su LOOPFESTIII
16
R-parity violating (RPV)
RPV operators contribute to Qe,pW at tree level RPV 95% CL MSSM loop Exp constraints decay: |Vud| = APV(Cs): QWCs = Re/ : Re/ = G: G = QpW No SUSY dark matter I) Obtain 95% CL allowed region in RPV coefficients II) Evaluate QWe and QWp G S. Su LOOPFESTIII
17
Correlation between QpW and QeW
- QW (Z,N)=(2Z+N) QuW +(2N+Z) QdW QuW >0 QdW <0 SUSY correction to heavy nuclei QW QW(Z,N) / QW(Z,N) < 0.2 % for Cs Distinguish new physics MSSM: extra Z’: leptoquark: RPV SUSY QpW QeW QCsW small sizable S. Su LOOPFESTIII
18
Additional PV electron scattering ideas
- Czarnecki, Marciano, Erler et al. N deep inelastic Linear Collider e-e- DIS-Parity, JLab sin2W DIS-Parity, SLAC APV e+e- LEP, SLD SLAC E158 (ee) JLab Moller (ee) JLab Q-Weak (ep) (GeV) S. Su LOOPFESTIII
19
NuTeV experiment NC CC wrong-sign contribution! R=-0.0033 0.0015
Davidson et. al., JHEP 02, 037, 2002 MSSM (N X) (N l-(+)X) R() - (-) R= R= - S. Su LOOPFESTIII
20
R-parity violating (RPV)
RPV operators contribute to R() at tree level NC either wrong sign or too small hard to explain NuTeV deviation CC S. Su LOOPFESTIII
21
Conclusion Parity-violating ee and ep scattering
could be used to test SM and probe new physics MSSM contribution to QeW and QpW is 8% and 4% 1 exp need higher exp precision to constrain SUSY correlation between QeW and QpW distinguish various new physics distinguish various SUSY scenario whether dark matter is SUSY particle ? SUSY contribution to NuTeV result MSSM with R-parity: wrong sign /small negative gluino contribution: size constrained by other considerations hard to explain NuTeV in RPV SUSY is not responsible for the NuTeV deviation other new physics ? hadronic effects ? S. Su LOOPFESTIII
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.